预测时变繁殖数的有效方法

IF 4.7 2区 医学 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
Epidemiology Pub Date : 2024-07-01 Epub Date: 2024-05-24 DOI:10.1097/EDE.0000000000001744
Bryan Sumalinab, Oswaldo Gressani, Niel Hens, Christel Faes
{"title":"预测时变繁殖数的有效方法","authors":"Bryan Sumalinab, Oswaldo Gressani, Niel Hens, Christel Faes","doi":"10.1097/EDE.0000000000001744","DOIUrl":null,"url":null,"abstract":"<p><p>Estimating the instantaneous reproduction number ( ) in near real time is crucial for monitoring and responding to epidemic outbreaks on a daily basis. However, such estimates often suffer from bias due to reporting delays inherent in surveillance systems. We propose a fast and flexible Bayesian methodology to overcome this challenge by estimating while taking into account reporting delays. Furthermore, the method naturally takes into account the uncertainty associated with the nowcasting of cases to get a valid uncertainty estimation of the nowcasted reproduction number. We evaluate the proposed methodology through a simulation study and apply it to COVID-19 incidence data in Belgium.</p>","PeriodicalId":11779,"journal":{"name":"Epidemiology","volume":" ","pages":"512-516"},"PeriodicalIF":4.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11191556/pdf/","citationCount":"0","resultStr":"{\"title\":\"An Efficient Approach to Nowcasting the Time-varying Reproduction Number.\",\"authors\":\"Bryan Sumalinab, Oswaldo Gressani, Niel Hens, Christel Faes\",\"doi\":\"10.1097/EDE.0000000000001744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Estimating the instantaneous reproduction number ( ) in near real time is crucial for monitoring and responding to epidemic outbreaks on a daily basis. However, such estimates often suffer from bias due to reporting delays inherent in surveillance systems. We propose a fast and flexible Bayesian methodology to overcome this challenge by estimating while taking into account reporting delays. Furthermore, the method naturally takes into account the uncertainty associated with the nowcasting of cases to get a valid uncertainty estimation of the nowcasted reproduction number. We evaluate the proposed methodology through a simulation study and apply it to COVID-19 incidence data in Belgium.</p>\",\"PeriodicalId\":11779,\"journal\":{\"name\":\"Epidemiology\",\"volume\":\" \",\"pages\":\"512-516\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11191556/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epidemiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/EDE.0000000000001744\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epidemiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/EDE.0000000000001744","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

摘要

近乎实时地估算瞬时繁殖数()对于每天监测和应对流行病爆发至关重要。然而,由于监测系统固有的报告延迟,这种估计往往存在偏差。我们提出了一种快速灵活的贝叶斯方法,在考虑报告延迟的同时进行估算,从而克服这一难题。此外,该方法自然会考虑到与病例预报相关的不确定性,从而对预报的繁殖数量进行有效的不确定性估计。我们通过模拟研究对所提出的方法进行了评估,并将其应用于比利时 COVID-19 发病率数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Efficient Approach to Nowcasting the Time-varying Reproduction Number.

Estimating the instantaneous reproduction number ( ) in near real time is crucial for monitoring and responding to epidemic outbreaks on a daily basis. However, such estimates often suffer from bias due to reporting delays inherent in surveillance systems. We propose a fast and flexible Bayesian methodology to overcome this challenge by estimating while taking into account reporting delays. Furthermore, the method naturally takes into account the uncertainty associated with the nowcasting of cases to get a valid uncertainty estimation of the nowcasted reproduction number. We evaluate the proposed methodology through a simulation study and apply it to COVID-19 incidence data in Belgium.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Epidemiology
Epidemiology 医学-公共卫生、环境卫生与职业卫生
CiteScore
6.70
自引率
3.70%
发文量
177
审稿时长
6-12 weeks
期刊介绍: Epidemiology publishes original research from all fields of epidemiology. The journal also welcomes review articles and meta-analyses, novel hypotheses, descriptions and applications of new methods, and discussions of research theory or public health policy. We give special consideration to papers from developing countries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信