Renuka S. Gohil, S. Karishma, Hemant Kumar, Madivala G. Basavaraj* and Ethayaraja Mani*,
{"title":"通过化学溶解稳定剂实现皮克林乳液的破乳化","authors":"Renuka S. Gohil, S. Karishma, Hemant Kumar, Madivala G. Basavaraj* and Ethayaraja Mani*, ","doi":"10.1021/acs.langmuir.4c00514","DOIUrl":null,"url":null,"abstract":"<p >Demulsification of particle-stabilized oil-in-water emulsions is crucial in diverse fields such as treatment of produce water, recovery of valuable products of Pickering emulsion catalysis, and so on. In this work, we investigated a facile method for destabilizing emulsions by dissolving stabilizer particles by the introduction of acid or base. Nanoellipsoidal hematite-stabilized decane-in-water emulsions are destabilized by dissolving hematite with oxalic or hydrochloric acid in situ. Time required for complete demulsification decreased as the acid concentration is increased. The demulsification time is typically on the order of a few hours for the chosen protocol. Similarly, the silica-stabilized decane–water emulsion is demulsified by the addition of aqueous sodium hydroxide. Demulsification kinetics is presented as the temporal change of the emulsion volume with time. Emulsion volume decreases in two stages: an initial slow decrease followed by an exponential decrease. Scanning electron microscopy analysis shows that the stabilizing particles are completely dissolved and recrystallized as salts of respective kinds. An estimate of the desorption free energy suggests that particle size should be reduced to a few nanometers for inducing destabilization. This work describes a facile method to destabilize oil-in-water emulsion, and it can be generalized to any other particle-stabilized emulsions by choosing appropriate chemical reagent for dissolution.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"40 23","pages":"11988–11997"},"PeriodicalIF":3.9000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Demulsification of Pickering Emulsions by Chemical Dissolution of Stabilizers\",\"authors\":\"Renuka S. Gohil, S. Karishma, Hemant Kumar, Madivala G. Basavaraj* and Ethayaraja Mani*, \",\"doi\":\"10.1021/acs.langmuir.4c00514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Demulsification of particle-stabilized oil-in-water emulsions is crucial in diverse fields such as treatment of produce water, recovery of valuable products of Pickering emulsion catalysis, and so on. In this work, we investigated a facile method for destabilizing emulsions by dissolving stabilizer particles by the introduction of acid or base. Nanoellipsoidal hematite-stabilized decane-in-water emulsions are destabilized by dissolving hematite with oxalic or hydrochloric acid in situ. Time required for complete demulsification decreased as the acid concentration is increased. The demulsification time is typically on the order of a few hours for the chosen protocol. Similarly, the silica-stabilized decane–water emulsion is demulsified by the addition of aqueous sodium hydroxide. Demulsification kinetics is presented as the temporal change of the emulsion volume with time. Emulsion volume decreases in two stages: an initial slow decrease followed by an exponential decrease. Scanning electron microscopy analysis shows that the stabilizing particles are completely dissolved and recrystallized as salts of respective kinds. An estimate of the desorption free energy suggests that particle size should be reduced to a few nanometers for inducing destabilization. This work describes a facile method to destabilize oil-in-water emulsion, and it can be generalized to any other particle-stabilized emulsions by choosing appropriate chemical reagent for dissolution.</p>\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":\"40 23\",\"pages\":\"11988–11997\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.langmuir.4c00514\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.langmuir.4c00514","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Demulsification of Pickering Emulsions by Chemical Dissolution of Stabilizers
Demulsification of particle-stabilized oil-in-water emulsions is crucial in diverse fields such as treatment of produce water, recovery of valuable products of Pickering emulsion catalysis, and so on. In this work, we investigated a facile method for destabilizing emulsions by dissolving stabilizer particles by the introduction of acid or base. Nanoellipsoidal hematite-stabilized decane-in-water emulsions are destabilized by dissolving hematite with oxalic or hydrochloric acid in situ. Time required for complete demulsification decreased as the acid concentration is increased. The demulsification time is typically on the order of a few hours for the chosen protocol. Similarly, the silica-stabilized decane–water emulsion is demulsified by the addition of aqueous sodium hydroxide. Demulsification kinetics is presented as the temporal change of the emulsion volume with time. Emulsion volume decreases in two stages: an initial slow decrease followed by an exponential decrease. Scanning electron microscopy analysis shows that the stabilizing particles are completely dissolved and recrystallized as salts of respective kinds. An estimate of the desorption free energy suggests that particle size should be reduced to a few nanometers for inducing destabilization. This work describes a facile method to destabilize oil-in-water emulsion, and it can be generalized to any other particle-stabilized emulsions by choosing appropriate chemical reagent for dissolution.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).