用于隐马尔可夫模型高效推理的减方差随机优化技术

IF 1.4 2区 数学 Q2 STATISTICS & PROBABILITY
Evan Sidrow, Nancy Heckman, Alexandre Bouchard-Côté, Sarah M. E. Fortune, Andrew W. Trites, Marie Auger-Méthé
{"title":"用于隐马尔可夫模型高效推理的减方差随机优化技术","authors":"Evan Sidrow, Nancy Heckman, Alexandre Bouchard-Côté, Sarah M. E. Fortune, Andrew W. Trites, Marie Auger-Méthé","doi":"10.1080/10618600.2024.2350476","DOIUrl":null,"url":null,"abstract":"Hidden Markov models (HMMs) are popular models to identify a finite number of latent states from sequential data. However, fitting them to large data sets can be computationally demanding because m...","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variance-Reduced Stochastic Optimization for Efficient Inference of Hidden Markov Models\",\"authors\":\"Evan Sidrow, Nancy Heckman, Alexandre Bouchard-Côté, Sarah M. E. Fortune, Andrew W. Trites, Marie Auger-Méthé\",\"doi\":\"10.1080/10618600.2024.2350476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hidden Markov models (HMMs) are popular models to identify a finite number of latent states from sequential data. However, fitting them to large data sets can be computationally demanding because m...\",\"PeriodicalId\":15422,\"journal\":{\"name\":\"Journal of Computational and Graphical Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Graphical Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/10618600.2024.2350476\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Graphical Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/10618600.2024.2350476","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

隐马尔可夫模型(HMMs)是从连续数据中识别有限数量潜状态的常用模型。然而,将它们拟合到大型数据集可能对计算能力要求很高,因为这些数据集的潜在状态数量有限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variance-Reduced Stochastic Optimization for Efficient Inference of Hidden Markov Models
Hidden Markov models (HMMs) are popular models to identify a finite number of latent states from sequential data. However, fitting them to large data sets can be computationally demanding because m...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
8.30%
发文量
153
审稿时长
>12 weeks
期刊介绍: The Journal of Computational and Graphical Statistics (JCGS) presents the very latest techniques on improving and extending the use of computational and graphical methods in statistics and data analysis. Established in 1992, this journal contains cutting-edge research, data, surveys, and more on numerical graphical displays and methods, and perception. Articles are written for readers who have a strong background in statistics but are not necessarily experts in computing. Published in March, June, September, and December.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信