Evan Sidrow, Nancy Heckman, Alexandre Bouchard-Côté, Sarah M. E. Fortune, Andrew W. Trites, Marie Auger-Méthé
{"title":"用于隐马尔可夫模型高效推理的减方差随机优化技术","authors":"Evan Sidrow, Nancy Heckman, Alexandre Bouchard-Côté, Sarah M. E. Fortune, Andrew W. Trites, Marie Auger-Méthé","doi":"10.1080/10618600.2024.2350476","DOIUrl":null,"url":null,"abstract":"Hidden Markov models (HMMs) are popular models to identify a finite number of latent states from sequential data. However, fitting them to large data sets can be computationally demanding because m...","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variance-Reduced Stochastic Optimization for Efficient Inference of Hidden Markov Models\",\"authors\":\"Evan Sidrow, Nancy Heckman, Alexandre Bouchard-Côté, Sarah M. E. Fortune, Andrew W. Trites, Marie Auger-Méthé\",\"doi\":\"10.1080/10618600.2024.2350476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hidden Markov models (HMMs) are popular models to identify a finite number of latent states from sequential data. However, fitting them to large data sets can be computationally demanding because m...\",\"PeriodicalId\":15422,\"journal\":{\"name\":\"Journal of Computational and Graphical Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Graphical Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/10618600.2024.2350476\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Graphical Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/10618600.2024.2350476","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Variance-Reduced Stochastic Optimization for Efficient Inference of Hidden Markov Models
Hidden Markov models (HMMs) are popular models to identify a finite number of latent states from sequential data. However, fitting them to large data sets can be computationally demanding because m...
期刊介绍:
The Journal of Computational and Graphical Statistics (JCGS) presents the very latest techniques on improving and extending the use of computational and graphical methods in statistics and data analysis. Established in 1992, this journal contains cutting-edge research, data, surveys, and more on numerical graphical displays and methods, and perception. Articles are written for readers who have a strong background in statistics but are not necessarily experts in computing. Published in March, June, September, and December.