Qijin Chen, Zhiqiang Wang, Rufus Boyack, Shuolong Yang, K. Levin
{"title":"当超导电性发生交叉:从 BCS 到 BEC","authors":"Qijin Chen, Zhiqiang Wang, Rufus Boyack, Shuolong Yang, K. Levin","doi":"10.1103/revmodphys.96.025002","DOIUrl":null,"url":null,"abstract":"New developments in superconductivity, particularly through unexpected and often surprising forms of superconducting materials, continue to excite the community and stimulate theory. It is now becoming clear that there are two distinct platforms for superconductivity: natural and synthetic materials. The study of these artificial materials has greatly expanded in the past decade or so, with the discoveries of new forms of superfluidity in artificial heterostructures and the exploitation of proximitization. Natural superconductors continue to surprise through Fe-based pnictides and chalcogenides, and nickelates as well as others. This review presents a two-pronged investigation into such superconductors, with an emphasis on those that have come to be understood to belong somewhere between the Bardeen-Cooper-Schrieffer (BCS) and Bose-Einstein condensation (BEC) regimes. The nature of this “crossover” superconductivity, which is to be distinguished from crossover superfluidity in atomic Fermi gases, is a focus here. Multiple ways of promoting a system out of the BCS and into the BCS-BEC crossover regime are addressed in the context of concrete experimental realizations. These involve natural materials, such as organic conductors, as well as artificial, mostly two-dimensional materials, such as magic-angle twisted bilayer and trilayer graphene, or gate-controlled devices, as well as one-layer and interfacial superconducting films. Such developments should be viewed as a celebration of BCS theory, as it is now clear that, even though this theory was initially implemented with the special case of weak correlations in mind, it can be extended in a natural way to treat the case of these more exotic strongly correlated superconductors.","PeriodicalId":21172,"journal":{"name":"Reviews of Modern Physics","volume":"18 1","pages":""},"PeriodicalIF":45.9000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"When superconductivity crosses over: From BCS to BEC\",\"authors\":\"Qijin Chen, Zhiqiang Wang, Rufus Boyack, Shuolong Yang, K. Levin\",\"doi\":\"10.1103/revmodphys.96.025002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"New developments in superconductivity, particularly through unexpected and often surprising forms of superconducting materials, continue to excite the community and stimulate theory. It is now becoming clear that there are two distinct platforms for superconductivity: natural and synthetic materials. The study of these artificial materials has greatly expanded in the past decade or so, with the discoveries of new forms of superfluidity in artificial heterostructures and the exploitation of proximitization. Natural superconductors continue to surprise through Fe-based pnictides and chalcogenides, and nickelates as well as others. This review presents a two-pronged investigation into such superconductors, with an emphasis on those that have come to be understood to belong somewhere between the Bardeen-Cooper-Schrieffer (BCS) and Bose-Einstein condensation (BEC) regimes. The nature of this “crossover” superconductivity, which is to be distinguished from crossover superfluidity in atomic Fermi gases, is a focus here. Multiple ways of promoting a system out of the BCS and into the BCS-BEC crossover regime are addressed in the context of concrete experimental realizations. These involve natural materials, such as organic conductors, as well as artificial, mostly two-dimensional materials, such as magic-angle twisted bilayer and trilayer graphene, or gate-controlled devices, as well as one-layer and interfacial superconducting films. Such developments should be viewed as a celebration of BCS theory, as it is now clear that, even though this theory was initially implemented with the special case of weak correlations in mind, it can be extended in a natural way to treat the case of these more exotic strongly correlated superconductors.\",\"PeriodicalId\":21172,\"journal\":{\"name\":\"Reviews of Modern Physics\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":45.9000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews of Modern Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/revmodphys.96.025002\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews of Modern Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/revmodphys.96.025002","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
When superconductivity crosses over: From BCS to BEC
New developments in superconductivity, particularly through unexpected and often surprising forms of superconducting materials, continue to excite the community and stimulate theory. It is now becoming clear that there are two distinct platforms for superconductivity: natural and synthetic materials. The study of these artificial materials has greatly expanded in the past decade or so, with the discoveries of new forms of superfluidity in artificial heterostructures and the exploitation of proximitization. Natural superconductors continue to surprise through Fe-based pnictides and chalcogenides, and nickelates as well as others. This review presents a two-pronged investigation into such superconductors, with an emphasis on those that have come to be understood to belong somewhere between the Bardeen-Cooper-Schrieffer (BCS) and Bose-Einstein condensation (BEC) regimes. The nature of this “crossover” superconductivity, which is to be distinguished from crossover superfluidity in atomic Fermi gases, is a focus here. Multiple ways of promoting a system out of the BCS and into the BCS-BEC crossover regime are addressed in the context of concrete experimental realizations. These involve natural materials, such as organic conductors, as well as artificial, mostly two-dimensional materials, such as magic-angle twisted bilayer and trilayer graphene, or gate-controlled devices, as well as one-layer and interfacial superconducting films. Such developments should be viewed as a celebration of BCS theory, as it is now clear that, even though this theory was initially implemented with the special case of weak correlations in mind, it can be extended in a natural way to treat the case of these more exotic strongly correlated superconductors.
期刊介绍:
Reviews of Modern Physics (RMP) stands as the world's foremost physics review journal and is the most extensively cited publication within the Physical Review collection. Authored by leading international researchers, RMP's comprehensive essays offer exceptional coverage of a topic, providing context and background for contemporary research trends. Since 1929, RMP has served as an unparalleled platform for authoritative review papers across all physics domains. The journal publishes two types of essays: Reviews and Colloquia. Review articles deliver the present state of a given topic, including historical context, a critical synthesis of research progress, and a summary of potential future developments.