微电网分布式负载频率控制系统虚假数据注入攻击的检测与防御方法

IF 5.7 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Zhixun Zhang;Jianqiang Hu;Jianquan Lu;Jie Yu;Jinde Cao;Ardak Kashkynbayev
{"title":"微电网分布式负载频率控制系统虚假数据注入攻击的检测与防御方法","authors":"Zhixun Zhang;Jianqiang Hu;Jianquan Lu;Jie Yu;Jinde Cao;Ardak Kashkynbayev","doi":"10.35833/MPCE.2023.000400","DOIUrl":null,"url":null,"abstract":"In the realm of microgrid (MG), the distributed load frequency control (LFC) system has proven to be highly susceptible to the negative effects of false data injection attacks (FDIAs). Considering the significant responsibility of the distributed LFC system for maintaining frequency stability within the MG, this paper proposes a detection and defense method against unobservable FDIAs in the distributed LFC system. Firstly, the method integrates a bi-directional long short-term memory (BiLSTM) neural network and an improved whale optimization algorithm (IWOA) into the LFC controller to detect and counteract FDIAs. Secondly, to enable the BiLSTM neural network to proficiently detect multiple types of FDIAs with utmost precision, the model employs a historical MG dataset comprising the frequency and power variances. Finally, the IWOA is utilized to optimize the proportional-integral-derivative (PID) controller parameters to counteract the negative impacts of FDIAs. The proposed detection and defense method is validated by building the distributed LFC system in Simulink.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"12 3","pages":"913-924"},"PeriodicalIF":5.7000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10316540","citationCount":"0","resultStr":"{\"title\":\"Detection and Defense Method Against False Data Injection Attacks for Distributed Load Frequency Control System in Microgrid\",\"authors\":\"Zhixun Zhang;Jianqiang Hu;Jianquan Lu;Jie Yu;Jinde Cao;Ardak Kashkynbayev\",\"doi\":\"10.35833/MPCE.2023.000400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the realm of microgrid (MG), the distributed load frequency control (LFC) system has proven to be highly susceptible to the negative effects of false data injection attacks (FDIAs). Considering the significant responsibility of the distributed LFC system for maintaining frequency stability within the MG, this paper proposes a detection and defense method against unobservable FDIAs in the distributed LFC system. Firstly, the method integrates a bi-directional long short-term memory (BiLSTM) neural network and an improved whale optimization algorithm (IWOA) into the LFC controller to detect and counteract FDIAs. Secondly, to enable the BiLSTM neural network to proficiently detect multiple types of FDIAs with utmost precision, the model employs a historical MG dataset comprising the frequency and power variances. Finally, the IWOA is utilized to optimize the proportional-integral-derivative (PID) controller parameters to counteract the negative impacts of FDIAs. The proposed detection and defense method is validated by building the distributed LFC system in Simulink.\",\"PeriodicalId\":51326,\"journal\":{\"name\":\"Journal of Modern Power Systems and Clean Energy\",\"volume\":\"12 3\",\"pages\":\"913-924\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2023-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10316540\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Modern Power Systems and Clean Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10316540/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Power Systems and Clean Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10316540/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在微电网(MG)领域,分布式负载频率控制(LFC)系统已被证明极易受到虚假数据注入攻击(FDIAs)的负面影响。考虑到分布式负载频率控制(LFC)系统在维持微电网(MG)内频率稳定方面的重要责任,本文提出了一种针对分布式负载频率控制(LFC)系统中不可观测的 FDIA 的检测和防御方法。首先,该方法将双向长短期记忆(BiLSTM)神经网络和改进的鲸鱼优化算法(IWOA)集成到 LFC 控制器中,以检测和抵御 FDIA。其次,为使 BiLSTM 神经网络能够以最高精度熟练检测多种类型的 FDIA,该模型采用了由频率和功率方差组成的历史 MG 数据集。最后,利用 IWOA 来优化比例-积分-派生(PID)控制器参数,以抵消 FDIA 的负面影响。通过在 Simulink 中构建分布式 LFC 系统,验证了所提出的检测和防御方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detection and Defense Method Against False Data Injection Attacks for Distributed Load Frequency Control System in Microgrid
In the realm of microgrid (MG), the distributed load frequency control (LFC) system has proven to be highly susceptible to the negative effects of false data injection attacks (FDIAs). Considering the significant responsibility of the distributed LFC system for maintaining frequency stability within the MG, this paper proposes a detection and defense method against unobservable FDIAs in the distributed LFC system. Firstly, the method integrates a bi-directional long short-term memory (BiLSTM) neural network and an improved whale optimization algorithm (IWOA) into the LFC controller to detect and counteract FDIAs. Secondly, to enable the BiLSTM neural network to proficiently detect multiple types of FDIAs with utmost precision, the model employs a historical MG dataset comprising the frequency and power variances. Finally, the IWOA is utilized to optimize the proportional-integral-derivative (PID) controller parameters to counteract the negative impacts of FDIAs. The proposed detection and defense method is validated by building the distributed LFC system in Simulink.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Modern Power Systems and Clean Energy
Journal of Modern Power Systems and Clean Energy ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
12.30
自引率
14.30%
发文量
97
审稿时长
13 weeks
期刊介绍: Journal of Modern Power Systems and Clean Energy (MPCE), commencing from June, 2013, is a newly established, peer-reviewed and quarterly published journal in English. It is the first international power engineering journal originated in mainland China. MPCE publishes original papers, short letters and review articles in the field of modern power systems with focus on smart grid technology and renewable energy integration, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信