{"title":"冠状动脉 CT 血管造影的超分辨率深度学习重建:结构化模型研究","authors":"Toru Higaki , Fuminari Tatsugami , Mickaël Ohana , Yuko Nakamura , Ikuo Kawashita , Kazuo Awai","doi":"10.1016/j.ejro.2024.100570","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><p>Super-resolution deep-learning-based reconstruction: SR-DLR is a newly developed and clinically available deep-learning-based image reconstruction method that can improve the spatial resolution of CT images. The image quality of the output from non-linear image reconstructions, such as DLR, is known to vary depending on the structure of the object being scanned, and a simple phantom cannot explicitly evaluate the clinical performance of SR-DLR. This study aims to accurately investigate the quality of the images reconstructed by SR-DLR by utilizing a structured phantom that simulates the human anatomy in coronary CT angiography.</p></div><div><h3>Methods</h3><p>The structural phantom had ribs and vertebrae made of plaster, a left ventricle filled with dilute contrast medium, a coronary artery with simulated stenosis, and an implanted stent graft. By scanning the structured phantom, we evaluated noise and spatial resolution on the images reconstructed with SR-DLR and conventional reconstructions.</p></div><div><h3>Results</h3><p>The spatial resolution of SR-DLR was higher than conventional reconstructions; the 10 % modulation transfer function of hybrid IR (HIR), DLR, and SR-DLR were 0.792-, 0.976-, and 1.379 cycle/mm, respectively. At the same time, image noise was lowest (HIR: 21.1-, DLR: 19.0-, and SR-DLR: 13.1 HU). SR-DLR could accurately assess coronary artery stenosis and the lumen of the implanted stent graft.</p></div><div><h3>Conclusions</h3><p>SR-DLR can obtain CT images with high spatial resolution and lower noise without special CT equipments, and will help diagnose coronary artery disease in CCTA and other CT examinations that require high spatial resolution.</p></div>","PeriodicalId":38076,"journal":{"name":"European Journal of Radiology Open","volume":"12 ","pages":"Article 100570"},"PeriodicalIF":1.8000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S235204772400025X/pdfft?md5=848a1255b113016a9a3d154385849c0d&pid=1-s2.0-S235204772400025X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Super resolution deep learning reconstruction for coronary CT angiography: A structured phantom study\",\"authors\":\"Toru Higaki , Fuminari Tatsugami , Mickaël Ohana , Yuko Nakamura , Ikuo Kawashita , Kazuo Awai\",\"doi\":\"10.1016/j.ejro.2024.100570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Purpose</h3><p>Super-resolution deep-learning-based reconstruction: SR-DLR is a newly developed and clinically available deep-learning-based image reconstruction method that can improve the spatial resolution of CT images. The image quality of the output from non-linear image reconstructions, such as DLR, is known to vary depending on the structure of the object being scanned, and a simple phantom cannot explicitly evaluate the clinical performance of SR-DLR. This study aims to accurately investigate the quality of the images reconstructed by SR-DLR by utilizing a structured phantom that simulates the human anatomy in coronary CT angiography.</p></div><div><h3>Methods</h3><p>The structural phantom had ribs and vertebrae made of plaster, a left ventricle filled with dilute contrast medium, a coronary artery with simulated stenosis, and an implanted stent graft. By scanning the structured phantom, we evaluated noise and spatial resolution on the images reconstructed with SR-DLR and conventional reconstructions.</p></div><div><h3>Results</h3><p>The spatial resolution of SR-DLR was higher than conventional reconstructions; the 10 % modulation transfer function of hybrid IR (HIR), DLR, and SR-DLR were 0.792-, 0.976-, and 1.379 cycle/mm, respectively. At the same time, image noise was lowest (HIR: 21.1-, DLR: 19.0-, and SR-DLR: 13.1 HU). SR-DLR could accurately assess coronary artery stenosis and the lumen of the implanted stent graft.</p></div><div><h3>Conclusions</h3><p>SR-DLR can obtain CT images with high spatial resolution and lower noise without special CT equipments, and will help diagnose coronary artery disease in CCTA and other CT examinations that require high spatial resolution.</p></div>\",\"PeriodicalId\":38076,\"journal\":{\"name\":\"European Journal of Radiology Open\",\"volume\":\"12 \",\"pages\":\"Article 100570\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S235204772400025X/pdfft?md5=848a1255b113016a9a3d154385849c0d&pid=1-s2.0-S235204772400025X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Radiology Open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S235204772400025X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Radiology Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S235204772400025X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Super resolution deep learning reconstruction for coronary CT angiography: A structured phantom study
Purpose
Super-resolution deep-learning-based reconstruction: SR-DLR is a newly developed and clinically available deep-learning-based image reconstruction method that can improve the spatial resolution of CT images. The image quality of the output from non-linear image reconstructions, such as DLR, is known to vary depending on the structure of the object being scanned, and a simple phantom cannot explicitly evaluate the clinical performance of SR-DLR. This study aims to accurately investigate the quality of the images reconstructed by SR-DLR by utilizing a structured phantom that simulates the human anatomy in coronary CT angiography.
Methods
The structural phantom had ribs and vertebrae made of plaster, a left ventricle filled with dilute contrast medium, a coronary artery with simulated stenosis, and an implanted stent graft. By scanning the structured phantom, we evaluated noise and spatial resolution on the images reconstructed with SR-DLR and conventional reconstructions.
Results
The spatial resolution of SR-DLR was higher than conventional reconstructions; the 10 % modulation transfer function of hybrid IR (HIR), DLR, and SR-DLR were 0.792-, 0.976-, and 1.379 cycle/mm, respectively. At the same time, image noise was lowest (HIR: 21.1-, DLR: 19.0-, and SR-DLR: 13.1 HU). SR-DLR could accurately assess coronary artery stenosis and the lumen of the implanted stent graft.
Conclusions
SR-DLR can obtain CT images with high spatial resolution and lower noise without special CT equipments, and will help diagnose coronary artery disease in CCTA and other CT examinations that require high spatial resolution.