基于荧光的多巴胺检测

IF 6.5 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Valeriia Sliesarenko , Urban Bren , Aleksandra Lobnik
{"title":"基于荧光的多巴胺检测","authors":"Valeriia Sliesarenko ,&nbsp;Urban Bren ,&nbsp;Aleksandra Lobnik","doi":"10.1016/j.snr.2024.100199","DOIUrl":null,"url":null,"abstract":"<div><p>Dopamine is an important hormone and neurotransmitter, and its levels in human fluids can indicate stress, depression, and various mental disorders. Food products, as well as medications, affect its level in the human body greatly. Therefore, dopamine monitoring is crucial, and necessary for improving the quality of life. The priority is to search for simple and environmentally friendly sensor systems for the in vitro detection of dopamine, enabling mass utilization.</p><p>In this study, we explored the use of o-phthalaldehyde (OPA) as an indicator for the detection of dopamine, with fluorescence in the visible range (λ<sub>ex</sub>/λ<sub>em</sub> = 390/455 nm), while direct dopamine fluorescence measurement was in the UV range (λ<sub>ex</sub>/λ<sub>em</sub> = 280/320 nm). The longer excitation/emission wavelengths of dopamine-OPA complex, as well as lower detection limits, are useful for developing a simple detection method using LEDs. Three types of poloxamers were tested as additives to improve the fluorescence signal from the reaction between dopamine and OPA. Pluronic F127 led to a 16-fold increase in the fluorescence. Utilizing 4% Pluronic F127 with OPA at pH 7 resulted in a linear response within concentration ranges of dopamine (0.5–3 µM), achieving a limit of detection of 0.015 µM. In contrast, a direct detection of dopamine within the same range exhibited a detection limit of 0.13 µM.</p></div>","PeriodicalId":426,"journal":{"name":"Sensors and Actuators Reports","volume":"7 ","pages":"Article 100199"},"PeriodicalIF":6.5000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666053924000158/pdfft?md5=1f2429dcc48f90f8a9afc65d0ad28fe7&pid=1-s2.0-S2666053924000158-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Fluorescence based dopamine detection\",\"authors\":\"Valeriia Sliesarenko ,&nbsp;Urban Bren ,&nbsp;Aleksandra Lobnik\",\"doi\":\"10.1016/j.snr.2024.100199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Dopamine is an important hormone and neurotransmitter, and its levels in human fluids can indicate stress, depression, and various mental disorders. Food products, as well as medications, affect its level in the human body greatly. Therefore, dopamine monitoring is crucial, and necessary for improving the quality of life. The priority is to search for simple and environmentally friendly sensor systems for the in vitro detection of dopamine, enabling mass utilization.</p><p>In this study, we explored the use of o-phthalaldehyde (OPA) as an indicator for the detection of dopamine, with fluorescence in the visible range (λ<sub>ex</sub>/λ<sub>em</sub> = 390/455 nm), while direct dopamine fluorescence measurement was in the UV range (λ<sub>ex</sub>/λ<sub>em</sub> = 280/320 nm). The longer excitation/emission wavelengths of dopamine-OPA complex, as well as lower detection limits, are useful for developing a simple detection method using LEDs. Three types of poloxamers were tested as additives to improve the fluorescence signal from the reaction between dopamine and OPA. Pluronic F127 led to a 16-fold increase in the fluorescence. Utilizing 4% Pluronic F127 with OPA at pH 7 resulted in a linear response within concentration ranges of dopamine (0.5–3 µM), achieving a limit of detection of 0.015 µM. In contrast, a direct detection of dopamine within the same range exhibited a detection limit of 0.13 µM.</p></div>\",\"PeriodicalId\":426,\"journal\":{\"name\":\"Sensors and Actuators Reports\",\"volume\":\"7 \",\"pages\":\"Article 100199\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666053924000158/pdfft?md5=1f2429dcc48f90f8a9afc65d0ad28fe7&pid=1-s2.0-S2666053924000158-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors and Actuators Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666053924000158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666053924000158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

多巴胺是一种重要的荷尔蒙和神经递质,其在人体液中的含量可显示压力、抑郁和各种精神障碍。食品和药物对多巴胺在人体内的含量影响很大。因此,对多巴胺的监测至关重要,也是提高生活质量所必需的。在这项研究中,我们探索了使用邻苯二甲醛(OPA)作为检测多巴胺的指示剂,其荧光在可见光范围内(λex/λem = 390/455 nm),而直接多巴胺荧光测量在紫外光范围内(λex/λem = 280/320 nm)。多巴胺-OPA 复合物的激发/发射波长较长,检测限较低,有利于开发使用 LED 的简单检测方法。为了改善多巴胺和 OPA 反应产生的荧光信号,我们测试了三种聚氧丙烯酰胺作为添加剂。Pluronic F127 使荧光增加了 16 倍。在 pH 值为 7 的条件下,使用 4% 的 Pluronic F127 与 OPA 会在多巴胺浓度范围(0.5-3 µM)内产生线性响应,检测限为 0.015 µM。相比之下,在同一范围内直接检测多巴胺的检测限为 0.13 µM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fluorescence based dopamine detection

Fluorescence based dopamine detection

Dopamine is an important hormone and neurotransmitter, and its levels in human fluids can indicate stress, depression, and various mental disorders. Food products, as well as medications, affect its level in the human body greatly. Therefore, dopamine monitoring is crucial, and necessary for improving the quality of life. The priority is to search for simple and environmentally friendly sensor systems for the in vitro detection of dopamine, enabling mass utilization.

In this study, we explored the use of o-phthalaldehyde (OPA) as an indicator for the detection of dopamine, with fluorescence in the visible range (λexem = 390/455 nm), while direct dopamine fluorescence measurement was in the UV range (λexem = 280/320 nm). The longer excitation/emission wavelengths of dopamine-OPA complex, as well as lower detection limits, are useful for developing a simple detection method using LEDs. Three types of poloxamers were tested as additives to improve the fluorescence signal from the reaction between dopamine and OPA. Pluronic F127 led to a 16-fold increase in the fluorescence. Utilizing 4% Pluronic F127 with OPA at pH 7 resulted in a linear response within concentration ranges of dopamine (0.5–3 µM), achieving a limit of detection of 0.015 µM. In contrast, a direct detection of dopamine within the same range exhibited a detection limit of 0.13 µM.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.60
自引率
0.00%
发文量
60
审稿时长
49 days
期刊介绍: Sensors and Actuators Reports is a peer-reviewed open access journal launched out from the Sensors and Actuators journal family. Sensors and Actuators Reports is dedicated to publishing new and original works in the field of all type of sensors and actuators, including bio-, chemical-, physical-, and nano- sensors and actuators, which demonstrates significant progress beyond the current state of the art. The journal regularly publishes original research papers, reviews, and short communications. For research papers and short communications, the journal aims to publish the new and original work supported by experimental results and as such purely theoretical works are not accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信