Sofía Quesada , Ayelén Daiana Rosso , Florencia Mascardi , Valeria Soler-Rivero , Pablo Aguilera , Sebastian Nicolas Mascuka , Andrea Boiro , Evangelina Arenielo , Gustavo Vijoditz , Leila Romina Ferreyra-Mufarregue , Marina Flavia Caputo , María Cecilia Cimolai , Federico Coluccio Leskow , Alberto Penas-Steinhardt , Fiorella Sabrina Belforte
{"title":"系统性红斑狼疮生物标志物的综合分析:粪便hsa-mir-223-3p和肠道微生物群在跨王国动态中的作用","authors":"Sofía Quesada , Ayelén Daiana Rosso , Florencia Mascardi , Valeria Soler-Rivero , Pablo Aguilera , Sebastian Nicolas Mascuka , Andrea Boiro , Evangelina Arenielo , Gustavo Vijoditz , Leila Romina Ferreyra-Mufarregue , Marina Flavia Caputo , María Cecilia Cimolai , Federico Coluccio Leskow , Alberto Penas-Steinhardt , Fiorella Sabrina Belforte","doi":"10.1016/j.molimm.2024.05.004","DOIUrl":null,"url":null,"abstract":"<div><p>Systemic lupus erythematosus (SLE) involves a florid set of clinical manifestations whose autoreactive origin is characterized by an overactivation of the immune system and the production of a large number of autoantibodies. Because it is a complex pathology with an inflammatory component, its pathogenesis is not yet fully understood, assuming both genetic and environmental predisposing factors. Currently, it is known that the role of the human microbiome is crucial in maintaining the transkingdom balance between commensal microorganisms and the immune system. In the present work we study the intestinal microbiota of Argentine patients with different stages of SLE receiving or not different treatments. Microbiota composition and fecal miRNAs were assessed by 16 S sequencing and qPCR. hsa-miR-223–3p, a miRNA involved in several inflammation regulation pathways, was found underexpressed in SLE patients without immunosuppressive treatment. In terms of microbiota there were clear differences in population structure (Weighted and Unweighted Unifrac distances, p-value <0.05) and core microbiome between cases and controls. In addition, <em>Collinsella, Bifidobacterium, Streptococcus</em> genera and aromatics degradation metabolisms were overrepresented in the SLE group. Medical treatment was also determinant as several microbial metabolic pathways were influenced by immunosuppressive therapy. Particularly, allantoin degradation metabolism was differentially expressed in the group of patients receiving immunosuppressants. Finally, we performed a logistic regression model (LASSO: least absolute shrinkage and selection operator) considering the expression levels of the fecal hsa-miR223–3p; the core microbiota; the differentially abundant bacterial taxa and the differentially abundant metabolic pathways (p<0.05). The model predicted that SLE patients could be associated with greater relative abundance of the formaldehyde oxidation pathway (RUMP_PWY). On the contrary, the preponderance of the ketodeoxyoctonate (Kdo) biosynthesis and activation route (PWY_1269) and the genera Lachnospiraceae_UCG_004, Lachnospira, Victivallis and UCG_003 (genus belonging to the family Oscillospiraceae of the class Clostridia) were associated with a control phenotype. Overall, the present work could contribute to the development of integral diagnostic tools for the comprehensive phenotyping of patients with SLE. In this sense, studying the commensal microbial profile and possible pathobionts associated with SLE in our population proposes more effective and precise strategies to explore possible treatments based on the microbiota of SLE patients.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrative analysis of systemic lupus erythematosus biomarkers: Role of fecal hsa-mir-223–3p and gut microbiota in transkingdom dynamics\",\"authors\":\"Sofía Quesada , Ayelén Daiana Rosso , Florencia Mascardi , Valeria Soler-Rivero , Pablo Aguilera , Sebastian Nicolas Mascuka , Andrea Boiro , Evangelina Arenielo , Gustavo Vijoditz , Leila Romina Ferreyra-Mufarregue , Marina Flavia Caputo , María Cecilia Cimolai , Federico Coluccio Leskow , Alberto Penas-Steinhardt , Fiorella Sabrina Belforte\",\"doi\":\"10.1016/j.molimm.2024.05.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Systemic lupus erythematosus (SLE) involves a florid set of clinical manifestations whose autoreactive origin is characterized by an overactivation of the immune system and the production of a large number of autoantibodies. Because it is a complex pathology with an inflammatory component, its pathogenesis is not yet fully understood, assuming both genetic and environmental predisposing factors. Currently, it is known that the role of the human microbiome is crucial in maintaining the transkingdom balance between commensal microorganisms and the immune system. In the present work we study the intestinal microbiota of Argentine patients with different stages of SLE receiving or not different treatments. Microbiota composition and fecal miRNAs were assessed by 16 S sequencing and qPCR. hsa-miR-223–3p, a miRNA involved in several inflammation regulation pathways, was found underexpressed in SLE patients without immunosuppressive treatment. In terms of microbiota there were clear differences in population structure (Weighted and Unweighted Unifrac distances, p-value <0.05) and core microbiome between cases and controls. In addition, <em>Collinsella, Bifidobacterium, Streptococcus</em> genera and aromatics degradation metabolisms were overrepresented in the SLE group. Medical treatment was also determinant as several microbial metabolic pathways were influenced by immunosuppressive therapy. Particularly, allantoin degradation metabolism was differentially expressed in the group of patients receiving immunosuppressants. Finally, we performed a logistic regression model (LASSO: least absolute shrinkage and selection operator) considering the expression levels of the fecal hsa-miR223–3p; the core microbiota; the differentially abundant bacterial taxa and the differentially abundant metabolic pathways (p<0.05). The model predicted that SLE patients could be associated with greater relative abundance of the formaldehyde oxidation pathway (RUMP_PWY). On the contrary, the preponderance of the ketodeoxyoctonate (Kdo) biosynthesis and activation route (PWY_1269) and the genera Lachnospiraceae_UCG_004, Lachnospira, Victivallis and UCG_003 (genus belonging to the family Oscillospiraceae of the class Clostridia) were associated with a control phenotype. Overall, the present work could contribute to the development of integral diagnostic tools for the comprehensive phenotyping of patients with SLE. In this sense, studying the commensal microbial profile and possible pathobionts associated with SLE in our population proposes more effective and precise strategies to explore possible treatments based on the microbiota of SLE patients.</p></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0161589024000956\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0161589024000956","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Integrative analysis of systemic lupus erythematosus biomarkers: Role of fecal hsa-mir-223–3p and gut microbiota in transkingdom dynamics
Systemic lupus erythematosus (SLE) involves a florid set of clinical manifestations whose autoreactive origin is characterized by an overactivation of the immune system and the production of a large number of autoantibodies. Because it is a complex pathology with an inflammatory component, its pathogenesis is not yet fully understood, assuming both genetic and environmental predisposing factors. Currently, it is known that the role of the human microbiome is crucial in maintaining the transkingdom balance between commensal microorganisms and the immune system. In the present work we study the intestinal microbiota of Argentine patients with different stages of SLE receiving or not different treatments. Microbiota composition and fecal miRNAs were assessed by 16 S sequencing and qPCR. hsa-miR-223–3p, a miRNA involved in several inflammation regulation pathways, was found underexpressed in SLE patients without immunosuppressive treatment. In terms of microbiota there were clear differences in population structure (Weighted and Unweighted Unifrac distances, p-value <0.05) and core microbiome between cases and controls. In addition, Collinsella, Bifidobacterium, Streptococcus genera and aromatics degradation metabolisms were overrepresented in the SLE group. Medical treatment was also determinant as several microbial metabolic pathways were influenced by immunosuppressive therapy. Particularly, allantoin degradation metabolism was differentially expressed in the group of patients receiving immunosuppressants. Finally, we performed a logistic regression model (LASSO: least absolute shrinkage and selection operator) considering the expression levels of the fecal hsa-miR223–3p; the core microbiota; the differentially abundant bacterial taxa and the differentially abundant metabolic pathways (p<0.05). The model predicted that SLE patients could be associated with greater relative abundance of the formaldehyde oxidation pathway (RUMP_PWY). On the contrary, the preponderance of the ketodeoxyoctonate (Kdo) biosynthesis and activation route (PWY_1269) and the genera Lachnospiraceae_UCG_004, Lachnospira, Victivallis and UCG_003 (genus belonging to the family Oscillospiraceae of the class Clostridia) were associated with a control phenotype. Overall, the present work could contribute to the development of integral diagnostic tools for the comprehensive phenotyping of patients with SLE. In this sense, studying the commensal microbial profile and possible pathobionts associated with SLE in our population proposes more effective and precise strategies to explore possible treatments based on the microbiota of SLE patients.