Lucia Ameis, Oliver Kuss, Annika Hoyer, Kathrin Möllenhoff
{"title":"在时间到事件数据中评估治疗效果的非参数比例风险模型。","authors":"Lucia Ameis, Oliver Kuss, Annika Hoyer, Kathrin Möllenhoff","doi":"10.1002/bimj.202300147","DOIUrl":null,"url":null,"abstract":"<p>Time-to-event analysis often relies on prior parametric assumptions, or, if a semiparametric approach is chosen, Cox's model. This is inherently tied to the assumption of proportional hazards, with the analysis potentially invalidated if this assumption is not fulfilled. In addition, most interpretations focus on the hazard ratio, that is often misinterpreted as the relative risk (RR), the ratio of the cumulative distribution functions. In this paper, we introduce an alternative to current methodology for assessing a treatment effect in a two-group situation, not relying on the proportional hazards assumption but assuming proportional risks. Precisely, we propose a new nonparametric model to directly estimate the RR of two groups to experience an event under the assumption that the risk ratio is constant over time. In addition to this relative measure, our model allows for calculating the number needed to treat as an absolute measure, providing the possibility of an easy and holistic interpretation of the data. We demonstrate the validity of the approach by means of a simulation study and present an application to data from a large randomized controlled trial investigating the effect of dapagliflozin on all-cause mortality.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.202300147","citationCount":"0","resultStr":"{\"title\":\"A nonparametric proportional risk model to assess a treatment effect in time-to-event data\",\"authors\":\"Lucia Ameis, Oliver Kuss, Annika Hoyer, Kathrin Möllenhoff\",\"doi\":\"10.1002/bimj.202300147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Time-to-event analysis often relies on prior parametric assumptions, or, if a semiparametric approach is chosen, Cox's model. This is inherently tied to the assumption of proportional hazards, with the analysis potentially invalidated if this assumption is not fulfilled. In addition, most interpretations focus on the hazard ratio, that is often misinterpreted as the relative risk (RR), the ratio of the cumulative distribution functions. In this paper, we introduce an alternative to current methodology for assessing a treatment effect in a two-group situation, not relying on the proportional hazards assumption but assuming proportional risks. Precisely, we propose a new nonparametric model to directly estimate the RR of two groups to experience an event under the assumption that the risk ratio is constant over time. In addition to this relative measure, our model allows for calculating the number needed to treat as an absolute measure, providing the possibility of an easy and holistic interpretation of the data. We demonstrate the validity of the approach by means of a simulation study and present an application to data from a large randomized controlled trial investigating the effect of dapagliflozin on all-cause mortality.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.202300147\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bimj.202300147\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bimj.202300147","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A nonparametric proportional risk model to assess a treatment effect in time-to-event data
Time-to-event analysis often relies on prior parametric assumptions, or, if a semiparametric approach is chosen, Cox's model. This is inherently tied to the assumption of proportional hazards, with the analysis potentially invalidated if this assumption is not fulfilled. In addition, most interpretations focus on the hazard ratio, that is often misinterpreted as the relative risk (RR), the ratio of the cumulative distribution functions. In this paper, we introduce an alternative to current methodology for assessing a treatment effect in a two-group situation, not relying on the proportional hazards assumption but assuming proportional risks. Precisely, we propose a new nonparametric model to directly estimate the RR of two groups to experience an event under the assumption that the risk ratio is constant over time. In addition to this relative measure, our model allows for calculating the number needed to treat as an absolute measure, providing the possibility of an easy and holistic interpretation of the data. We demonstrate the validity of the approach by means of a simulation study and present an application to data from a large randomized controlled trial investigating the effect of dapagliflozin on all-cause mortality.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.