{"title":"IFN-γ-脐带干细胞可改善颞下颌关节骨关节炎。","authors":"Yerin Kim, Hyunjeong Kim, So-Yeon Yun, Bu-Kyu Lee","doi":"10.1089/ten.TEA.2023.0370","DOIUrl":null,"url":null,"abstract":"<p><p>Temporomandibular joint osteoarthritis (TMJOA) is a degenerative disorder affecting the temporomandibular joint (TMJ), marked by persistent inflammation and structural damage to the joint. Only symptomatic treatment is available for managing TMJOA. Human umbilical cord mesenchymal stem cells (hUC-MSCs) show potential for treating TMJOA via their immune-modulating actions in the disease area. In addition, stimulation of inflammatory cytokines such as interferon-gamma in hUC-MSCs improves the therapeutic activity of naïve stem cells. Emerging evidence indicates that macrophages play significant roles in regulating joint inflammation through diverse secreted mediators in the pathogenesis of TMJOA. This study was conducted to evaluate the effects of inflammatory cytokine-stimulated hUC-MSCs in repairing TMJOA-induced cartilage lesions and the role of macrophages in the disease. Our <i>in vitro</i> data showed that stimulated hUC-MSCs induce M2 polarization of macrophages and enhance the expression of anti-inflammatory molecules. These effects were subsequently validated <i>in vivo</i>. In a rat model of TMJOA, stimulated hUC-MSCs ameliorated inflammation and increased M2 macrophages ratio. Our results indicate that hUC-MSCs stimulated by inflammatory cytokines modulate the activation of M2 macrophages, thereby shifting the local osteoarthritis microenvironment toward a prochondrogenic state and facilitating cartilage repair in inflammatory conditions. Stimulating hUC-MSCs with inflammatory cytokines could potentially offer an effective therapeutic approach for TMJOA, with macrophages playing a pivotal role in immune modulation.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Primed IFN-γ-Umbilical Cord Stem Cells Ameliorate Temporomandibular Joint Osteoarthritis.\",\"authors\":\"Yerin Kim, Hyunjeong Kim, So-Yeon Yun, Bu-Kyu Lee\",\"doi\":\"10.1089/ten.TEA.2023.0370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Temporomandibular joint osteoarthritis (TMJOA) is a degenerative disorder affecting the temporomandibular joint (TMJ), marked by persistent inflammation and structural damage to the joint. Only symptomatic treatment is available for managing TMJOA. Human umbilical cord mesenchymal stem cells (hUC-MSCs) show potential for treating TMJOA via their immune-modulating actions in the disease area. In addition, stimulation of inflammatory cytokines such as interferon-gamma in hUC-MSCs improves the therapeutic activity of naïve stem cells. Emerging evidence indicates that macrophages play significant roles in regulating joint inflammation through diverse secreted mediators in the pathogenesis of TMJOA. This study was conducted to evaluate the effects of inflammatory cytokine-stimulated hUC-MSCs in repairing TMJOA-induced cartilage lesions and the role of macrophages in the disease. Our <i>in vitro</i> data showed that stimulated hUC-MSCs induce M2 polarization of macrophages and enhance the expression of anti-inflammatory molecules. These effects were subsequently validated <i>in vivo</i>. In a rat model of TMJOA, stimulated hUC-MSCs ameliorated inflammation and increased M2 macrophages ratio. Our results indicate that hUC-MSCs stimulated by inflammatory cytokines modulate the activation of M2 macrophages, thereby shifting the local osteoarthritis microenvironment toward a prochondrogenic state and facilitating cartilage repair in inflammatory conditions. Stimulating hUC-MSCs with inflammatory cytokines could potentially offer an effective therapeutic approach for TMJOA, with macrophages playing a pivotal role in immune modulation.</p>\",\"PeriodicalId\":56375,\"journal\":{\"name\":\"Tissue Engineering Part A\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue Engineering Part A\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/ten.TEA.2023.0370\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue Engineering Part A","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/ten.TEA.2023.0370","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Temporomandibular joint osteoarthritis (TMJOA) is a degenerative disorder affecting the temporomandibular joint (TMJ), marked by persistent inflammation and structural damage to the joint. Only symptomatic treatment is available for managing TMJOA. Human umbilical cord mesenchymal stem cells (hUC-MSCs) show potential for treating TMJOA via their immune-modulating actions in the disease area. In addition, stimulation of inflammatory cytokines such as interferon-gamma in hUC-MSCs improves the therapeutic activity of naïve stem cells. Emerging evidence indicates that macrophages play significant roles in regulating joint inflammation through diverse secreted mediators in the pathogenesis of TMJOA. This study was conducted to evaluate the effects of inflammatory cytokine-stimulated hUC-MSCs in repairing TMJOA-induced cartilage lesions and the role of macrophages in the disease. Our in vitro data showed that stimulated hUC-MSCs induce M2 polarization of macrophages and enhance the expression of anti-inflammatory molecules. These effects were subsequently validated in vivo. In a rat model of TMJOA, stimulated hUC-MSCs ameliorated inflammation and increased M2 macrophages ratio. Our results indicate that hUC-MSCs stimulated by inflammatory cytokines modulate the activation of M2 macrophages, thereby shifting the local osteoarthritis microenvironment toward a prochondrogenic state and facilitating cartilage repair in inflammatory conditions. Stimulating hUC-MSCs with inflammatory cytokines could potentially offer an effective therapeutic approach for TMJOA, with macrophages playing a pivotal role in immune modulation.
期刊介绍:
Tissue Engineering is the preeminent, biomedical journal advancing the field with cutting-edge research and applications that repair or regenerate portions or whole tissues. This multidisciplinary journal brings together the principles of engineering and life sciences in the creation of artificial tissues and regenerative medicine. Tissue Engineering is divided into three parts, providing a central forum for groundbreaking scientific research and developments of clinical applications from leading experts in the field that will enable the functional replacement of tissues.