早产新生儿晚期脑膜炎发生前的粪便微生物群和挥发性代谢组模式改变。

IF 4.5 2区 医学 Q2 IMMUNOLOGY
Nina M Frerichs, Nancy Deianova, Sofia El Manouni El Hassani, Animesh Acharjee, Mohammed Nabil Quraishi, Willem P de Boode, Veerle Cossey, Christian V Hulzebos, Anton H van Kaam, Boris W Kramer, Esther d'Haens, Wouter J de Jonge, Daniel C Vijlbrief, Mirjam M van Weissenbruch, Emma Daulton, Alfian N Wicaksono, James A Covington, Marc A Benninga, Nanne K H de Boer, Johannes B van Goudoever, Hendrik J Niemarkt, Tim G J de Meij
{"title":"早产新生儿晚期脑膜炎发生前的粪便微生物群和挥发性代谢组模式改变。","authors":"Nina M Frerichs, Nancy Deianova, Sofia El Manouni El Hassani, Animesh Acharjee, Mohammed Nabil Quraishi, Willem P de Boode, Veerle Cossey, Christian V Hulzebos, Anton H van Kaam, Boris W Kramer, Esther d'Haens, Wouter J de Jonge, Daniel C Vijlbrief, Mirjam M van Weissenbruch, Emma Daulton, Alfian N Wicaksono, James A Covington, Marc A Benninga, Nanne K H de Boer, Johannes B van Goudoever, Hendrik J Niemarkt, Tim G J de Meij","doi":"10.1093/infdis/jiae265","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The fecal microbiota and metabolome are hypothesized to be altered before late-onset neonatal meningitis (LOM), analogous to late-onset sepsis (LOS). The present study aimed to identify fecal microbiota composition and volatile metabolomics preceding LOM.</p><p><strong>Methods: </strong>Cases and gestational age-matched controls were selected from a prospective, longitudinal preterm cohort study (born <30 weeks' gestation) at 9 neonatal intensive care units. The microbial composition (16S rRNA sequencing) and volatile metabolome (gas chromatography-ion mobility spectrometry [GC-IMS] and GC-time-of-flight-mass spectrometry [GC-TOF-MS]) were analyzed in fecal samples 1-10 days pre-LOM.</p><p><strong>Results: </strong>Of 1397 included infants, 21 were diagnosed with LOM (1.5%), and 19 with concomitant LOS (90%). Random forest classification and MaAsLin2 analysis found similar microbiota features contribute to the discrimination of fecal pre-LOM samples versus controls. A random forest model based on 6 microbiota features accurately predicted LOM 1-3 days before diagnosis with an area under the curve (AUC) of 0.88 (n = 147). Pattern recognition analysis by GC-IMS revealed an AUC of 0.70-0.76 (P < .05) in the 3 days pre-LOM (n = 92). No single discriminative metabolites were identified by GC-TOF-MS (n = 66).</p><p><strong>Conclusions: </strong>Infants with LOM could be accurately discriminated from controls based on preclinical microbiota composition, while alterations in the volatile metabolome were moderately associated with preclinical LOM.</p>","PeriodicalId":50179,"journal":{"name":"Journal of Infectious Diseases","volume":" ","pages":"1382-1391"},"PeriodicalIF":4.5000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12247813/pdf/","citationCount":"0","resultStr":"{\"title\":\"Fecal Microbiota and Volatile Metabolome Pattern Alterations Precede Late-Onset Meningitis in Preterm Neonates.\",\"authors\":\"Nina M Frerichs, Nancy Deianova, Sofia El Manouni El Hassani, Animesh Acharjee, Mohammed Nabil Quraishi, Willem P de Boode, Veerle Cossey, Christian V Hulzebos, Anton H van Kaam, Boris W Kramer, Esther d'Haens, Wouter J de Jonge, Daniel C Vijlbrief, Mirjam M van Weissenbruch, Emma Daulton, Alfian N Wicaksono, James A Covington, Marc A Benninga, Nanne K H de Boer, Johannes B van Goudoever, Hendrik J Niemarkt, Tim G J de Meij\",\"doi\":\"10.1093/infdis/jiae265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The fecal microbiota and metabolome are hypothesized to be altered before late-onset neonatal meningitis (LOM), analogous to late-onset sepsis (LOS). The present study aimed to identify fecal microbiota composition and volatile metabolomics preceding LOM.</p><p><strong>Methods: </strong>Cases and gestational age-matched controls were selected from a prospective, longitudinal preterm cohort study (born <30 weeks' gestation) at 9 neonatal intensive care units. The microbial composition (16S rRNA sequencing) and volatile metabolome (gas chromatography-ion mobility spectrometry [GC-IMS] and GC-time-of-flight-mass spectrometry [GC-TOF-MS]) were analyzed in fecal samples 1-10 days pre-LOM.</p><p><strong>Results: </strong>Of 1397 included infants, 21 were diagnosed with LOM (1.5%), and 19 with concomitant LOS (90%). Random forest classification and MaAsLin2 analysis found similar microbiota features contribute to the discrimination of fecal pre-LOM samples versus controls. A random forest model based on 6 microbiota features accurately predicted LOM 1-3 days before diagnosis with an area under the curve (AUC) of 0.88 (n = 147). Pattern recognition analysis by GC-IMS revealed an AUC of 0.70-0.76 (P < .05) in the 3 days pre-LOM (n = 92). No single discriminative metabolites were identified by GC-TOF-MS (n = 66).</p><p><strong>Conclusions: </strong>Infants with LOM could be accurately discriminated from controls based on preclinical microbiota composition, while alterations in the volatile metabolome were moderately associated with preclinical LOM.</p>\",\"PeriodicalId\":50179,\"journal\":{\"name\":\"Journal of Infectious Diseases\",\"volume\":\" \",\"pages\":\"1382-1391\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12247813/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Infectious Diseases\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/infdis/jiae265\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Infectious Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/infdis/jiae265","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

研究目的据推测,晚期新生儿脑膜炎(LOM)与晚期败血症(LOS)类似,发生前粪便微生物群和代谢组会发生改变。本研究旨在确定 LOM 发病前的粪便微生物群组成和挥发性代谢组学:方法:从一项前瞻性纵向早产儿队列研究(出生结果)中选取了病例和胎龄匹配的对照组:在纳入的 1397 名婴儿中,21 名被诊断为 LOM(1.5%),19 名同时患有 LOS(90%)。随机森林分类和MaAsLin2分析发现,相似的微生物群特征有助于区分LOM前粪便样本和对照样本。基于六个微生物群特征的随机森林模型可准确预测诊断前1-3天的LOM,其曲线下面积(AUC)为0.88(n=147)。通过 GC-IMS 进行的模式识别分析显示,AUC 为 0.70-0.76(PC结论:根据临床前微生物群的组成可以准确地将患有LOM的婴儿与对照组区分开来,而挥发性代谢组的改变与临床前LOM有一定的关联。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fecal Microbiota and Volatile Metabolome Pattern Alterations Precede Late-Onset Meningitis in Preterm Neonates.

Fecal Microbiota and Volatile Metabolome Pattern Alterations Precede Late-Onset Meningitis in Preterm Neonates.

Fecal Microbiota and Volatile Metabolome Pattern Alterations Precede Late-Onset Meningitis in Preterm Neonates.

Background: The fecal microbiota and metabolome are hypothesized to be altered before late-onset neonatal meningitis (LOM), analogous to late-onset sepsis (LOS). The present study aimed to identify fecal microbiota composition and volatile metabolomics preceding LOM.

Methods: Cases and gestational age-matched controls were selected from a prospective, longitudinal preterm cohort study (born <30 weeks' gestation) at 9 neonatal intensive care units. The microbial composition (16S rRNA sequencing) and volatile metabolome (gas chromatography-ion mobility spectrometry [GC-IMS] and GC-time-of-flight-mass spectrometry [GC-TOF-MS]) were analyzed in fecal samples 1-10 days pre-LOM.

Results: Of 1397 included infants, 21 were diagnosed with LOM (1.5%), and 19 with concomitant LOS (90%). Random forest classification and MaAsLin2 analysis found similar microbiota features contribute to the discrimination of fecal pre-LOM samples versus controls. A random forest model based on 6 microbiota features accurately predicted LOM 1-3 days before diagnosis with an area under the curve (AUC) of 0.88 (n = 147). Pattern recognition analysis by GC-IMS revealed an AUC of 0.70-0.76 (P < .05) in the 3 days pre-LOM (n = 92). No single discriminative metabolites were identified by GC-TOF-MS (n = 66).

Conclusions: Infants with LOM could be accurately discriminated from controls based on preclinical microbiota composition, while alterations in the volatile metabolome were moderately associated with preclinical LOM.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Infectious Diseases
Journal of Infectious Diseases 医学-传染病学
CiteScore
13.50
自引率
3.10%
发文量
449
审稿时长
2-4 weeks
期刊介绍: Published continuously since 1904, The Journal of Infectious Diseases (JID) is the premier global journal for original research on infectious diseases. The editors welcome Major Articles and Brief Reports describing research results on microbiology, immunology, epidemiology, and related disciplines, on the pathogenesis, diagnosis, and treatment of infectious diseases; on the microbes that cause them; and on disorders of host immune responses. JID is an official publication of the Infectious Diseases Society of America.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信