应用纳滤技术降低制盐过程中的能耗和对饲料成分波动的敏感性

IF 3.3 4区 工程技术 Q2 CHEMISTRY, PHYSICAL
Marian Turek, Krzysztof Mitko, Paweł Skóra
{"title":"应用纳滤技术降低制盐过程中的能耗和对饲料成分波动的敏感性","authors":"Marian Turek, Krzysztof Mitko, Paweł Skóra","doi":"10.3390/membranes14050103","DOIUrl":null,"url":null,"abstract":"<p><p>The only currently active industrial-scale plant that uses coal mine brines, located in Czerwionka-Leszczyny, uses ZOD (Zakład Odsalania Dębieńsko, the name of the plant's former owner) technology, based on mechanical vapor compression evaporators. The plant produces evaporated salt that meets the specifications for edible salt; however, the technology is highly energy-consuming. The presented work focuses on the modeling of ZOD technology if applied to the water treatment of the 'Ziemowit-650' coal mine. Using the results of bench-scale investigation of brine nanofiltration and a mathematical model of ZOD technology based on Czerwionka-Leszczyny performance, the energy consumption per ton of produced salt was estimated for two cases: (1) ZOD technology treating the 'Ziemowit-650' brine and (2) ZOD technology treating the permeate of nanofiltration (NF) working on the 'Ziemowit-650' brine. The sensitivity of the system was investigated in the range of -10% to + 10% of Cl<sup>-</sup>, SO<sub>4</sub><sup>2-</sup>, Mg<sup>2+</sup>, and Ca<sup>2+</sup> concentration, assuming that the sodium concentration also changes to meet the electroneutrality requirement. The results show that nanofiltration pretreatment not only decreases energy consumption but it also makes salt production less sensitive to fluctuations in feed water composition.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"14 5","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11122864/pdf/","citationCount":"0","resultStr":"{\"title\":\"Applying Nanofiltration to Decrease Energy Consumption and Sensitivity toward Feed Composition Fluctuations in Salt Production.\",\"authors\":\"Marian Turek, Krzysztof Mitko, Paweł Skóra\",\"doi\":\"10.3390/membranes14050103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The only currently active industrial-scale plant that uses coal mine brines, located in Czerwionka-Leszczyny, uses ZOD (Zakład Odsalania Dębieńsko, the name of the plant's former owner) technology, based on mechanical vapor compression evaporators. The plant produces evaporated salt that meets the specifications for edible salt; however, the technology is highly energy-consuming. The presented work focuses on the modeling of ZOD technology if applied to the water treatment of the 'Ziemowit-650' coal mine. Using the results of bench-scale investigation of brine nanofiltration and a mathematical model of ZOD technology based on Czerwionka-Leszczyny performance, the energy consumption per ton of produced salt was estimated for two cases: (1) ZOD technology treating the 'Ziemowit-650' brine and (2) ZOD technology treating the permeate of nanofiltration (NF) working on the 'Ziemowit-650' brine. The sensitivity of the system was investigated in the range of -10% to + 10% of Cl<sup>-</sup>, SO<sub>4</sub><sup>2-</sup>, Mg<sup>2+</sup>, and Ca<sup>2+</sup> concentration, assuming that the sodium concentration also changes to meet the electroneutrality requirement. The results show that nanofiltration pretreatment not only decreases energy consumption but it also makes salt production less sensitive to fluctuations in feed water composition.</p>\",\"PeriodicalId\":18410,\"journal\":{\"name\":\"Membranes\",\"volume\":\"14 5\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11122864/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Membranes\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/membranes14050103\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/membranes14050103","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

目前唯一一家使用煤矿卤水的工业规模工厂位于切尔维翁卡-莱什奇尼(Czerwionka-Leszczyny),使用的是以机械蒸汽压缩蒸发器为基础的 ZOD(Zakład Odsalania Dębieńsko,工厂前所有者的名字)技术。该工厂生产的蒸发盐符合食用盐的规格要求,但该技术能耗很高。本报告的重点是对 ZOD 技术应用于 "Ziemowit-650 "煤矿的水处理进行建模。利用盐水纳滤的台架规模研究结果和基于 Czerwionka-Leszczyny 性能的 ZOD 技术数学模型,估算了两种情况下生产每吨盐的能耗:(1) ZOD 技术处理 "Ziemowit-650 "盐水;(2) ZOD 技术处理在 "Ziemowit-650 "盐水上工作的纳滤(NF)渗透液。在 Cl-、SO42-、Mg2+ 和 Ca2+ 浓度 -10% 至 + 10% 的范围内,对系统的灵敏度进行了研究,同时假定钠浓度也会发生变化,以满足电中性要求。结果表明,纳滤预处理不仅能降低能耗,还能降低制盐对进水成分波动的敏感性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Applying Nanofiltration to Decrease Energy Consumption and Sensitivity toward Feed Composition Fluctuations in Salt Production.

The only currently active industrial-scale plant that uses coal mine brines, located in Czerwionka-Leszczyny, uses ZOD (Zakład Odsalania Dębieńsko, the name of the plant's former owner) technology, based on mechanical vapor compression evaporators. The plant produces evaporated salt that meets the specifications for edible salt; however, the technology is highly energy-consuming. The presented work focuses on the modeling of ZOD technology if applied to the water treatment of the 'Ziemowit-650' coal mine. Using the results of bench-scale investigation of brine nanofiltration and a mathematical model of ZOD technology based on Czerwionka-Leszczyny performance, the energy consumption per ton of produced salt was estimated for two cases: (1) ZOD technology treating the 'Ziemowit-650' brine and (2) ZOD technology treating the permeate of nanofiltration (NF) working on the 'Ziemowit-650' brine. The sensitivity of the system was investigated in the range of -10% to + 10% of Cl-, SO42-, Mg2+, and Ca2+ concentration, assuming that the sodium concentration also changes to meet the electroneutrality requirement. The results show that nanofiltration pretreatment not only decreases energy consumption but it also makes salt production less sensitive to fluctuations in feed water composition.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Membranes
Membranes Chemical Engineering-Filtration and Separation
CiteScore
6.10
自引率
16.70%
发文量
1071
审稿时长
11 weeks
期刊介绍: Membranes (ISSN 2077-0375) is an international, peer-reviewed open access journal of separation science and technology. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信