Chii-Dong Ho, Yi-Wun Wang, Yi Chao, Thiam Leng Chew, Ming-Shen Jiang, Jian-Har Chen, Ching-Yu Li
{"title":"利用插入式 S-Ribs 碳纤维丝提高直接接触膜蒸馏模块的渗透通量。","authors":"Chii-Dong Ho, Yi-Wun Wang, Yi Chao, Thiam Leng Chew, Ming-Shen Jiang, Jian-Har Chen, Ching-Yu Li","doi":"10.3390/membranes14050098","DOIUrl":null,"url":null,"abstract":"<p><p>Three widths of manufacturing S-ribs carbon-fiber filaments acting as turbulence promoters were implemented into the flow channel of direct contact membrane distillation (DCMD) modules to augment the permeate flux improvement in the present study. Attempts to reduce the disadvantageous temperature polarization effect were made by inserting S-ribs turbulence promoters in improving pure water productivity, in which both heat- and mass-transfer boundary layers were diminished due to creating vortices in the flow pattern and increasing turbulence intensity. The temperature polarization coefficient ttemp was studied and found to enhance device performance (less thermal resistance) under inserting various S-ribs carbon-fiber thicknesses and operating both cocurrent- and countercurrent-flow patterns. The permeate fluxes in the DCMD modules with inserted S-ribs carbon-fiber turbulence promoters were investigated theoretically by developing the mathematical modeling equations and were conducted experimentally with various design and operating parameters. The theoretical predictions and experimental results exhibited a great potential to considerably achieve permeate flux enhancement in the new design of the DCMD system. The DCMD module with inserted S-ribs carbon-fiber turbulence promoters in the flow channel could provide a relative permeate flux enhancement up to 37.77% under countercurrent-flow operations in comparisons with the module of using the empty channel. An economic consideration on both permeate flux enhancement and power consumption increment for the module with inserted S-ribs carbon-fiber filaments was also delineated.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"14 5","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11122939/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhancing the Permeate Flux Improvement of Direct Contact Membrane Distillation Modules with Inserted S-Ribs Carbon-Fiber Filaments.\",\"authors\":\"Chii-Dong Ho, Yi-Wun Wang, Yi Chao, Thiam Leng Chew, Ming-Shen Jiang, Jian-Har Chen, Ching-Yu Li\",\"doi\":\"10.3390/membranes14050098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Three widths of manufacturing S-ribs carbon-fiber filaments acting as turbulence promoters were implemented into the flow channel of direct contact membrane distillation (DCMD) modules to augment the permeate flux improvement in the present study. Attempts to reduce the disadvantageous temperature polarization effect were made by inserting S-ribs turbulence promoters in improving pure water productivity, in which both heat- and mass-transfer boundary layers were diminished due to creating vortices in the flow pattern and increasing turbulence intensity. The temperature polarization coefficient ttemp was studied and found to enhance device performance (less thermal resistance) under inserting various S-ribs carbon-fiber thicknesses and operating both cocurrent- and countercurrent-flow patterns. The permeate fluxes in the DCMD modules with inserted S-ribs carbon-fiber turbulence promoters were investigated theoretically by developing the mathematical modeling equations and were conducted experimentally with various design and operating parameters. The theoretical predictions and experimental results exhibited a great potential to considerably achieve permeate flux enhancement in the new design of the DCMD system. The DCMD module with inserted S-ribs carbon-fiber turbulence promoters in the flow channel could provide a relative permeate flux enhancement up to 37.77% under countercurrent-flow operations in comparisons with the module of using the empty channel. An economic consideration on both permeate flux enhancement and power consumption increment for the module with inserted S-ribs carbon-fiber filaments was also delineated.</p>\",\"PeriodicalId\":18410,\"journal\":{\"name\":\"Membranes\",\"volume\":\"14 5\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11122939/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Membranes\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/membranes14050098\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/membranes14050098","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Enhancing the Permeate Flux Improvement of Direct Contact Membrane Distillation Modules with Inserted S-Ribs Carbon-Fiber Filaments.
Three widths of manufacturing S-ribs carbon-fiber filaments acting as turbulence promoters were implemented into the flow channel of direct contact membrane distillation (DCMD) modules to augment the permeate flux improvement in the present study. Attempts to reduce the disadvantageous temperature polarization effect were made by inserting S-ribs turbulence promoters in improving pure water productivity, in which both heat- and mass-transfer boundary layers were diminished due to creating vortices in the flow pattern and increasing turbulence intensity. The temperature polarization coefficient ttemp was studied and found to enhance device performance (less thermal resistance) under inserting various S-ribs carbon-fiber thicknesses and operating both cocurrent- and countercurrent-flow patterns. The permeate fluxes in the DCMD modules with inserted S-ribs carbon-fiber turbulence promoters were investigated theoretically by developing the mathematical modeling equations and were conducted experimentally with various design and operating parameters. The theoretical predictions and experimental results exhibited a great potential to considerably achieve permeate flux enhancement in the new design of the DCMD system. The DCMD module with inserted S-ribs carbon-fiber turbulence promoters in the flow channel could provide a relative permeate flux enhancement up to 37.77% under countercurrent-flow operations in comparisons with the module of using the empty channel. An economic consideration on both permeate flux enhancement and power consumption increment for the module with inserted S-ribs carbon-fiber filaments was also delineated.
MembranesChemical Engineering-Filtration and Separation
CiteScore
6.10
自引率
16.70%
发文量
1071
审稿时长
11 weeks
期刊介绍:
Membranes (ISSN 2077-0375) is an international, peer-reviewed open access journal of separation science and technology. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.