核蛋白 Akirin 在 Henosepilachna vigintioctopunctata 幼虫发育过程中的关键作用。

IF 2.3 2区 农林科学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ahmad Ali Anjum, Meng-Jiao Lin, Lin Jin, Guo-Qing Li
{"title":"核蛋白 Akirin 在 Henosepilachna vigintioctopunctata 幼虫发育过程中的关键作用。","authors":"Ahmad Ali Anjum,&nbsp;Meng-Jiao Lin,&nbsp;Lin Jin,&nbsp;Guo-Qing Li","doi":"10.1111/imb.12929","DOIUrl":null,"url":null,"abstract":"<p>Akirin is a nuclear protein that controls development in vertebrates and invertebrates. The function of Akirin has not been assessed in any Coleopteran insects. We found that high levels of <i>akirin</i> transcripts in <i>Henosepilachna vigintioctopunctata</i>, a serious Coleopteran potato defoliator (hereafter <i>Hvakirin</i>), were present at prepupal, pupal and adult stages, especially in larval foregut and fat body. RNA interference (RNAi) targeting <i>Hvakirin</i> impaired larval development. The <i>Hvakirin</i> RNAi larvae arrested development at the final larval instar stage. They remained as stunted larvae, gradually blackened and finally died. Moreover, the remodelling of gut and fat body was inhibited in the <i>Hvakirin</i> depleted larvae. Two layers of cuticles, old and newly formed, were noted in the ds<i>egfp</i>-injected animals. In contrast, only a layer of cuticle was found in the ds<i>akirin</i>-injected beetles, indicating the arrest of larval development. Furthermore, the expression of three transforming growth factor-β cascade genes (<i>Hvsmox</i>, <i>Hvmyo</i> and <i>Hvbabo</i>), a 20-hydroxyecdysone (20E) receptor gene (<i>HvEcR</i>) and six 20E response genes (<i>HvHR3</i>, <i>HvHR4</i>, <i>HvE75</i>, <i>HvBrC</i>, <i>HvE93</i> and <i>Hvftz-f1</i>) was significantly repressed, consistent with decreased 20E signalling. Conversely, the transcription of a juvenile hormone (JH) biosynthesis gene (<i>Hvjhamt</i>), a JH receptor gene (<i>HvMet</i>) and two JH response genes (<i>HvKr-h1</i> and <i>HvHairy</i>) was greatly enhanced. Our findings suggest a critical role of Akirin in larval development in <i>H. vigintioctopunctata</i>.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A critical role for the nuclear protein Akirin in larval development in Henosepilachna vigintioctopunctata\",\"authors\":\"Ahmad Ali Anjum,&nbsp;Meng-Jiao Lin,&nbsp;Lin Jin,&nbsp;Guo-Qing Li\",\"doi\":\"10.1111/imb.12929\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Akirin is a nuclear protein that controls development in vertebrates and invertebrates. The function of Akirin has not been assessed in any Coleopteran insects. We found that high levels of <i>akirin</i> transcripts in <i>Henosepilachna vigintioctopunctata</i>, a serious Coleopteran potato defoliator (hereafter <i>Hvakirin</i>), were present at prepupal, pupal and adult stages, especially in larval foregut and fat body. RNA interference (RNAi) targeting <i>Hvakirin</i> impaired larval development. The <i>Hvakirin</i> RNAi larvae arrested development at the final larval instar stage. They remained as stunted larvae, gradually blackened and finally died. Moreover, the remodelling of gut and fat body was inhibited in the <i>Hvakirin</i> depleted larvae. Two layers of cuticles, old and newly formed, were noted in the ds<i>egfp</i>-injected animals. In contrast, only a layer of cuticle was found in the ds<i>akirin</i>-injected beetles, indicating the arrest of larval development. Furthermore, the expression of three transforming growth factor-β cascade genes (<i>Hvsmox</i>, <i>Hvmyo</i> and <i>Hvbabo</i>), a 20-hydroxyecdysone (20E) receptor gene (<i>HvEcR</i>) and six 20E response genes (<i>HvHR3</i>, <i>HvHR4</i>, <i>HvE75</i>, <i>HvBrC</i>, <i>HvE93</i> and <i>Hvftz-f1</i>) was significantly repressed, consistent with decreased 20E signalling. Conversely, the transcription of a juvenile hormone (JH) biosynthesis gene (<i>Hvjhamt</i>), a JH receptor gene (<i>HvMet</i>) and two JH response genes (<i>HvKr-h1</i> and <i>HvHairy</i>) was greatly enhanced. Our findings suggest a critical role of Akirin in larval development in <i>H. vigintioctopunctata</i>.</p>\",\"PeriodicalId\":13526,\"journal\":{\"name\":\"Insect Molecular Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insect Molecular Biology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/imb.12929\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Molecular Biology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/imb.12929","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

Akirin 是一种控制脊椎动物和无脊椎动物发育的核蛋白。Akirin的功能尚未在任何鞘翅目昆虫中进行过评估。我们发现,一种严重的鞘翅目马铃薯脱叶害虫 Henosepilachna vigintioctopunctata(以下简称 Hvakirin)在蛹前期、蛹期和成虫期,尤其是在幼虫前肠和脂肪体中都存在高水平的 Akirin 转录本。针对 Hvakirin 的 RNA 干扰(RNAi)会影响幼虫的发育。Hvakirin RNAi 幼虫在幼虫末龄阶段停止发育。幼虫发育迟缓,逐渐变黑,最后死亡。此外,Hvakirin缺失幼虫的肠道和脂肪体重塑受到抑制。在注射了 dsegfp 的动物身上发现了新旧两层角质层。相比之下,注射了 dsakirin 的甲虫只有一层角质层,表明幼虫发育停止。此外,三个转化生长因子-β级联基因(Hvsmox、Hvmyo 和 Hvbabo)、一个 20-hydroxyecdysone (20E) 受体基因(HvEcR)和六个 20E 响应基因(HvHR3、HvHR4、HvE75、HvBrC、HvE93 和 Hvftz-f1)的表达受到显著抑制,这与 20E 信号的减少一致。相反,一个幼年激素(JH)生物合成基因(Hvjhamt)、一个 JH 受体基因(HvMet)和两个 JH 响应基因(HvKr-h1 和 HvHairy)的转录大大增强。我们的研究结果表明,Akirin 在 H. vigintioctopunctata 的幼虫发育过程中起着关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A critical role for the nuclear protein Akirin in larval development in Henosepilachna vigintioctopunctata

A critical role for the nuclear protein Akirin in larval development in Henosepilachna vigintioctopunctata

Akirin is a nuclear protein that controls development in vertebrates and invertebrates. The function of Akirin has not been assessed in any Coleopteran insects. We found that high levels of akirin transcripts in Henosepilachna vigintioctopunctata, a serious Coleopteran potato defoliator (hereafter Hvakirin), were present at prepupal, pupal and adult stages, especially in larval foregut and fat body. RNA interference (RNAi) targeting Hvakirin impaired larval development. The Hvakirin RNAi larvae arrested development at the final larval instar stage. They remained as stunted larvae, gradually blackened and finally died. Moreover, the remodelling of gut and fat body was inhibited in the Hvakirin depleted larvae. Two layers of cuticles, old and newly formed, were noted in the dsegfp-injected animals. In contrast, only a layer of cuticle was found in the dsakirin-injected beetles, indicating the arrest of larval development. Furthermore, the expression of three transforming growth factor-β cascade genes (Hvsmox, Hvmyo and Hvbabo), a 20-hydroxyecdysone (20E) receptor gene (HvEcR) and six 20E response genes (HvHR3, HvHR4, HvE75, HvBrC, HvE93 and Hvftz-f1) was significantly repressed, consistent with decreased 20E signalling. Conversely, the transcription of a juvenile hormone (JH) biosynthesis gene (Hvjhamt), a JH receptor gene (HvMet) and two JH response genes (HvKr-h1 and HvHairy) was greatly enhanced. Our findings suggest a critical role of Akirin in larval development in H. vigintioctopunctata.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Insect Molecular Biology
Insect Molecular Biology 生物-昆虫学
CiteScore
4.80
自引率
3.80%
发文量
68
审稿时长
6-12 weeks
期刊介绍: Insect Molecular Biology has been dedicated to providing researchers with the opportunity to publish high quality original research on topics broadly related to insect molecular biology since 1992. IMB is particularly interested in publishing research in insect genomics/genes and proteomics/proteins. This includes research related to: • insect gene structure • control of gene expression • localisation and function/activity of proteins • interactions of proteins and ligands/substrates • effect of mutations on gene/protein function • evolution of insect genes/genomes, especially where principles relevant to insects in general are established • molecular population genetics where data are used to identify genes (or regions of genomes) involved in specific adaptations • gene mapping using molecular tools • molecular interactions of insects with microorganisms including Wolbachia, symbionts and viruses or other pathogens transmitted by insects Papers can include large data sets e.g.from micro-array or proteomic experiments or analyses of genome sequences done in silico (subject to the data being placed in the context of hypothesis testing).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信