自走式机器人的可调主动动力学编程。

IF 1.8 4区 物理与天体物理 Q4 CHEMISTRY, PHYSICAL
Somnath Paramanick, Arnab Pal, Harsh Soni, Nitin Kumar
{"title":"自走式机器人的可调主动动力学编程。","authors":"Somnath Paramanick,&nbsp;Arnab Pal,&nbsp;Harsh Soni,&nbsp;Nitin Kumar","doi":"10.1140/epje/s10189-024-00430-x","DOIUrl":null,"url":null,"abstract":"<p>We present a scheme for producing tunable active dynamics in a self-propelled robotic device. The robot moves using the differential drive mechanism where two wheels can vary their instantaneous velocities independently. These velocities are calculated by equating robot’s equations of motion in two dimensions with well-established active particle models and encoded into the robot’s microcontroller. We demonstrate that the robot can depict active Brownian, run and tumble, and Brownian dynamics with a wide range of parameters. The resulting motion analyzed using particle tracking shows excellent agreement with the theoretically predicted trajectories. Later, we show that its motion can be switched between different dynamics using light intensity as an external parameter. Intriguingly, we demonstrate that the robot can efficiently navigate through many obstacles by performing stochastic reorientations driven by the gradient in light intensity towards a desired location, namely the target. This work opens an avenue for designing tunable active systems with the potential of revealing the physics of active matter and its application for bio- and nature-inspired robotics.</p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"47 5","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Programming tunable active dynamics in a self-propelled robot\",\"authors\":\"Somnath Paramanick,&nbsp;Arnab Pal,&nbsp;Harsh Soni,&nbsp;Nitin Kumar\",\"doi\":\"10.1140/epje/s10189-024-00430-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present a scheme for producing tunable active dynamics in a self-propelled robotic device. The robot moves using the differential drive mechanism where two wheels can vary their instantaneous velocities independently. These velocities are calculated by equating robot’s equations of motion in two dimensions with well-established active particle models and encoded into the robot’s microcontroller. We demonstrate that the robot can depict active Brownian, run and tumble, and Brownian dynamics with a wide range of parameters. The resulting motion analyzed using particle tracking shows excellent agreement with the theoretically predicted trajectories. Later, we show that its motion can be switched between different dynamics using light intensity as an external parameter. Intriguingly, we demonstrate that the robot can efficiently navigate through many obstacles by performing stochastic reorientations driven by the gradient in light intensity towards a desired location, namely the target. This work opens an avenue for designing tunable active systems with the potential of revealing the physics of active matter and its application for bio- and nature-inspired robotics.</p>\",\"PeriodicalId\":790,\"journal\":{\"name\":\"The European Physical Journal E\",\"volume\":\"47 5\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal E\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epje/s10189-024-00430-x\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal E","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epje/s10189-024-00430-x","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种在自推进机器人装置中产生可调主动动态的方案。机器人利用差分驱动机制移动,其中两个轮子可独立改变其瞬时速度。这些速度是通过将机器人的二维运动方程等同于成熟的主动粒子模型计算出来的,并编码到机器人的微控制器中。我们证明,该机器人可以利用各种参数描绘主动布朗运动、奔跑和翻滚以及布朗动力学。利用粒子跟踪分析得出的运动轨迹与理论预测轨迹非常吻合。随后,我们展示了利用光照强度作为外部参数,机器人的运动可以在不同动力学之间切换。耐人寻味的是,我们证明了机器人可以通过执行由光照强度梯度驱动的随机方向调整,有效地穿过许多障碍物,到达所需的位置,即目标。这项工作为设计可调主动系统开辟了一条途径,有望揭示主动物质的物理特性及其在生物和自然启发机器人学中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Programming tunable active dynamics in a self-propelled robot

Programming tunable active dynamics in a self-propelled robot

We present a scheme for producing tunable active dynamics in a self-propelled robotic device. The robot moves using the differential drive mechanism where two wheels can vary their instantaneous velocities independently. These velocities are calculated by equating robot’s equations of motion in two dimensions with well-established active particle models and encoded into the robot’s microcontroller. We demonstrate that the robot can depict active Brownian, run and tumble, and Brownian dynamics with a wide range of parameters. The resulting motion analyzed using particle tracking shows excellent agreement with the theoretically predicted trajectories. Later, we show that its motion can be switched between different dynamics using light intensity as an external parameter. Intriguingly, we demonstrate that the robot can efficiently navigate through many obstacles by performing stochastic reorientations driven by the gradient in light intensity towards a desired location, namely the target. This work opens an avenue for designing tunable active systems with the potential of revealing the physics of active matter and its application for bio- and nature-inspired robotics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The European Physical Journal E
The European Physical Journal E CHEMISTRY, PHYSICAL-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
2.60
自引率
5.60%
发文量
92
审稿时长
3 months
期刊介绍: EPJ E publishes papers describing advances in the understanding of physical aspects of Soft, Liquid and Living Systems. Soft matter is a generic term for a large group of condensed, often heterogeneous systems -- often also called complex fluids -- that display a large response to weak external perturbations and that possess properties governed by slow internal dynamics. Flowing matter refers to all systems that can actually flow, from simple to multiphase liquids, from foams to granular matter. Living matter concerns the new physics that emerges from novel insights into the properties and behaviours of living systems. Furthermore, it aims at developing new concepts and quantitative approaches for the study of biological phenomena. Approaches from soft matter physics and statistical physics play a key role in this research. The journal includes reports of experimental, computational and theoretical studies and appeals to the broad interdisciplinary communities including physics, chemistry, biology, mathematics and materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信