{"title":"甲基的标记:根据分子量选择 2H 前体的简化方案和指南。","authors":"Alexandra Locke, Kylee Guarino, Gordon S. Rule","doi":"10.1007/s10858-024-00441-y","DOIUrl":null,"url":null,"abstract":"<div><p>A streamlined one-day protocol is described to produce isotopically methyl-labeled protein with high levels of deuterium for NMR studies. Using this protocol, the D<sub>2</sub>O and <sup>2</sup>H-glucose content of the media and protonation level of ILV labeling precursors (ketobutyrate and ketovalerate) were varied. The relaxation rate of the multiple-quantum (MQ) state that is present during the HMQC-TROSY pulse sequence was measured for different labeling schemes and this rate was used to predict upper limits of molecular weights for various labeling schemes. The use of deuterated solvents (D<sub>2</sub>O) or deuterated glucose is not required to obtain <sup>1</sup>H–<sup>13</sup>C correlated NMR spectra of a 50 kDa homodimeric protein that are suitable for assignment by mutagenesis. High quality spectra of 100–150 kDa proteins, suitable for most applications, can be obtained without the use of deuterated glucose. The proton on the β-position of ketovalerate appears to undergo partial exchange with deuterium under the growth conditions used in this study.</p></div>","PeriodicalId":613,"journal":{"name":"Journal of Biomolecular NMR","volume":"78 3","pages":"149 - 159"},"PeriodicalIF":1.3000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10858-024-00441-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Labeling of methyl groups: a streamlined protocol and guidance for the selection of 2H precursors based on molecular weight\",\"authors\":\"Alexandra Locke, Kylee Guarino, Gordon S. Rule\",\"doi\":\"10.1007/s10858-024-00441-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A streamlined one-day protocol is described to produce isotopically methyl-labeled protein with high levels of deuterium for NMR studies. Using this protocol, the D<sub>2</sub>O and <sup>2</sup>H-glucose content of the media and protonation level of ILV labeling precursors (ketobutyrate and ketovalerate) were varied. The relaxation rate of the multiple-quantum (MQ) state that is present during the HMQC-TROSY pulse sequence was measured for different labeling schemes and this rate was used to predict upper limits of molecular weights for various labeling schemes. The use of deuterated solvents (D<sub>2</sub>O) or deuterated glucose is not required to obtain <sup>1</sup>H–<sup>13</sup>C correlated NMR spectra of a 50 kDa homodimeric protein that are suitable for assignment by mutagenesis. High quality spectra of 100–150 kDa proteins, suitable for most applications, can be obtained without the use of deuterated glucose. The proton on the β-position of ketovalerate appears to undergo partial exchange with deuterium under the growth conditions used in this study.</p></div>\",\"PeriodicalId\":613,\"journal\":{\"name\":\"Journal of Biomolecular NMR\",\"volume\":\"78 3\",\"pages\":\"149 - 159\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10858-024-00441-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomolecular NMR\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10858-024-00441-y\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular NMR","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10858-024-00441-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Labeling of methyl groups: a streamlined protocol and guidance for the selection of 2H precursors based on molecular weight
A streamlined one-day protocol is described to produce isotopically methyl-labeled protein with high levels of deuterium for NMR studies. Using this protocol, the D2O and 2H-glucose content of the media and protonation level of ILV labeling precursors (ketobutyrate and ketovalerate) were varied. The relaxation rate of the multiple-quantum (MQ) state that is present during the HMQC-TROSY pulse sequence was measured for different labeling schemes and this rate was used to predict upper limits of molecular weights for various labeling schemes. The use of deuterated solvents (D2O) or deuterated glucose is not required to obtain 1H–13C correlated NMR spectra of a 50 kDa homodimeric protein that are suitable for assignment by mutagenesis. High quality spectra of 100–150 kDa proteins, suitable for most applications, can be obtained without the use of deuterated glucose. The proton on the β-position of ketovalerate appears to undergo partial exchange with deuterium under the growth conditions used in this study.
期刊介绍:
The Journal of Biomolecular NMR provides a forum for publishing research on technical developments and innovative applications of nuclear magnetic resonance spectroscopy for the study of structure and dynamic properties of biopolymers in solution, liquid crystals, solids and mixed environments, e.g., attached to membranes. This may include:
Three-dimensional structure determination of biological macromolecules (polypeptides/proteins, DNA, RNA, oligosaccharides) by NMR.
New NMR techniques for studies of biological macromolecules.
Novel approaches to computer-aided automated analysis of multidimensional NMR spectra.
Computational methods for the structural interpretation of NMR data, including structure refinement.
Comparisons of structures determined by NMR with those obtained by other methods, e.g. by diffraction techniques with protein single crystals.
New techniques of sample preparation for NMR experiments (biosynthetic and chemical methods for isotope labeling, preparation of nutrients for biosynthetic isotope labeling, etc.). An NMR characterization of the products must be included.