{"title":"CRISPR/Cas9介导的精子发生相关基因 tssk2 的验证,作为秋季军虫 Spodoptera frugiperda (J. E. Smith) (鳞翅目:夜蛾科)遗传害虫管理的一个组成部分。","authors":"Cholenahalli Narayanappa Anu, Karuppannasamy Ashok, Chikmagalur Nagaraja Bhargava, Yogi Dhawane, Maligeppagol Manamohan, Grish Kumar Jha, Ramasamy Asokan","doi":"10.1002/arch.22121","DOIUrl":null,"url":null,"abstract":"<p>Invasive insect pests, currently, pose a serious economic threat to several staple crops all over the world, one such being the fall armyworm, <i>Spodoptera frugiperda</i>. It was first observed in Africa since 2016, outside of its natural habitat in the Americas. Subsequently, it invaded several countries in South and South East Asia and also very recently in Australia. In all the newly invaded regions, maize is the principal crop attacked causing a serious economic concern to the poor farmers, particularly in the developing countries. Owing to the innate genetic ability, it defies many of the management options that include insecticides, Bt transgenics, and so forth. This is due to its high mobility, polyphagy and ability for quick development of resistance to several classes of insecticides. At this critical juncture, CRISPR/Cas9 mediated genome editing has shown a lot of promise in developing a novel area-wide pest management strategy called precision-guided sterile insect technique (pgSIT). pgSIT was initially demonstrated in <i>Drosophila melanogaster</i> which holds a greater promise for the environmentally friendly management of several globally significant agricultural pests such as <i>S. frugiperda</i>. Therefore, before developing both sgRNA and Cas9 transgenic lines, we have validated the target gene such as <i>tssk2</i> through a non-transgenic approach by microinjecting ribo nucleo protein complex (Cas9 protein and <i>tssk2</i> sgRNA) into G<sub>0</sub> eggs of <i>S. frugiperda</i>. In the current investigation, we have obtained five edited males with distinct mutations which were further used for crossing studies to ascertain the effect of <i>tssk2</i> editing affecting egg hatchability.</p>","PeriodicalId":8281,"journal":{"name":"Archives of Insect Biochemistry and Physiology","volume":"116 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CRISPR/Cas9 mediated validation of spermatogenesis-related gene, tssk2 as a component of genetic pest management of fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae)\",\"authors\":\"Cholenahalli Narayanappa Anu, Karuppannasamy Ashok, Chikmagalur Nagaraja Bhargava, Yogi Dhawane, Maligeppagol Manamohan, Grish Kumar Jha, Ramasamy Asokan\",\"doi\":\"10.1002/arch.22121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Invasive insect pests, currently, pose a serious economic threat to several staple crops all over the world, one such being the fall armyworm, <i>Spodoptera frugiperda</i>. It was first observed in Africa since 2016, outside of its natural habitat in the Americas. Subsequently, it invaded several countries in South and South East Asia and also very recently in Australia. In all the newly invaded regions, maize is the principal crop attacked causing a serious economic concern to the poor farmers, particularly in the developing countries. Owing to the innate genetic ability, it defies many of the management options that include insecticides, Bt transgenics, and so forth. This is due to its high mobility, polyphagy and ability for quick development of resistance to several classes of insecticides. At this critical juncture, CRISPR/Cas9 mediated genome editing has shown a lot of promise in developing a novel area-wide pest management strategy called precision-guided sterile insect technique (pgSIT). pgSIT was initially demonstrated in <i>Drosophila melanogaster</i> which holds a greater promise for the environmentally friendly management of several globally significant agricultural pests such as <i>S. frugiperda</i>. Therefore, before developing both sgRNA and Cas9 transgenic lines, we have validated the target gene such as <i>tssk2</i> through a non-transgenic approach by microinjecting ribo nucleo protein complex (Cas9 protein and <i>tssk2</i> sgRNA) into G<sub>0</sub> eggs of <i>S. frugiperda</i>. In the current investigation, we have obtained five edited males with distinct mutations which were further used for crossing studies to ascertain the effect of <i>tssk2</i> editing affecting egg hatchability.</p>\",\"PeriodicalId\":8281,\"journal\":{\"name\":\"Archives of Insect Biochemistry and Physiology\",\"volume\":\"116 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Insect Biochemistry and Physiology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/arch.22121\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Insect Biochemistry and Physiology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/arch.22121","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
CRISPR/Cas9 mediated validation of spermatogenesis-related gene, tssk2 as a component of genetic pest management of fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae)
Invasive insect pests, currently, pose a serious economic threat to several staple crops all over the world, one such being the fall armyworm, Spodoptera frugiperda. It was first observed in Africa since 2016, outside of its natural habitat in the Americas. Subsequently, it invaded several countries in South and South East Asia and also very recently in Australia. In all the newly invaded regions, maize is the principal crop attacked causing a serious economic concern to the poor farmers, particularly in the developing countries. Owing to the innate genetic ability, it defies many of the management options that include insecticides, Bt transgenics, and so forth. This is due to its high mobility, polyphagy and ability for quick development of resistance to several classes of insecticides. At this critical juncture, CRISPR/Cas9 mediated genome editing has shown a lot of promise in developing a novel area-wide pest management strategy called precision-guided sterile insect technique (pgSIT). pgSIT was initially demonstrated in Drosophila melanogaster which holds a greater promise for the environmentally friendly management of several globally significant agricultural pests such as S. frugiperda. Therefore, before developing both sgRNA and Cas9 transgenic lines, we have validated the target gene such as tssk2 through a non-transgenic approach by microinjecting ribo nucleo protein complex (Cas9 protein and tssk2 sgRNA) into G0 eggs of S. frugiperda. In the current investigation, we have obtained five edited males with distinct mutations which were further used for crossing studies to ascertain the effect of tssk2 editing affecting egg hatchability.
期刊介绍:
Archives of Insect Biochemistry and Physiology is an international journal that publishes articles in English that are of interest to insect biochemists and physiologists. Generally these articles will be in, or related to, one of the following subject areas: Behavior, Bioinformatics, Carbohydrates, Cell Line Development, Cell Signalling, Development, Drug Discovery, Endocrinology, Enzymes, Lipids, Molecular Biology, Neurobiology, Nucleic Acids, Nutrition, Peptides, Pharmacology, Pollinators, Proteins, Toxicology. Archives will publish only original articles. Articles that are confirmatory in nature or deal with analytical methods previously described will not be accepted.