高效气桥热光电池

IF 38.6 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Joule Pub Date : 2024-07-17 DOI:10.1016/j.joule.2024.05.002
{"title":"高效气桥热光电池","authors":"","doi":"10.1016/j.joule.2024.05.002","DOIUrl":null,"url":null,"abstract":"<div><p>Thermophotovoltaic (TPV) cells generate electricity by converting infrared radiation emitted by a hot thermal source. Air-bridge TPVs have demonstrated enhanced power conversion efficiencies by recuperating a large amount of power carried by below-band-gap (out-of-band) photons. Here, we demonstrate single-junction InGaAs(P) air-bridge TPVs that exhibit up to 44% efficiency under 1,435°C blackbody illumination. The air-bridge design leads to near-unity reflectance (97%–99%) of out-of-band photons for ternary and quaternary TPVs whose band gaps range from 0.74 to 1.1 eV. These results suggest the applicability of the air-bridge cells to a range of semiconductor systems suitable for electricity generation from thermal sources found in both consumer and industrial applications, including thermal batteries.</p></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":null,"pages":null},"PeriodicalIF":38.6000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-efficiency air-bridge thermophotovoltaic cells\",\"authors\":\"\",\"doi\":\"10.1016/j.joule.2024.05.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Thermophotovoltaic (TPV) cells generate electricity by converting infrared radiation emitted by a hot thermal source. Air-bridge TPVs have demonstrated enhanced power conversion efficiencies by recuperating a large amount of power carried by below-band-gap (out-of-band) photons. Here, we demonstrate single-junction InGaAs(P) air-bridge TPVs that exhibit up to 44% efficiency under 1,435°C blackbody illumination. The air-bridge design leads to near-unity reflectance (97%–99%) of out-of-band photons for ternary and quaternary TPVs whose band gaps range from 0.74 to 1.1 eV. These results suggest the applicability of the air-bridge cells to a range of semiconductor systems suitable for electricity generation from thermal sources found in both consumer and industrial applications, including thermal batteries.</p></div>\",\"PeriodicalId\":343,\"journal\":{\"name\":\"Joule\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":38.6000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Joule\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542435124002022\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542435124002022","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

热光电(TPV)电池通过转换热源发出的红外辐射来发电。气桥冠捷光伏电池通过回收带隙以下(带外)光子携带的大量电能,提高了功率转换效率。在这里,我们展示了单结 InGaAs(P)气桥热塑性硫化弹性体,在 1435°C 黑体照明下,其效率高达 44%。对于带隙范围在 0.74 至 1.1 eV 之间的三元和四元热塑性硫化弹性体,气桥设计可实现接近统一的带外光子反射率(97%-99%)。这些结果表明,气桥电池适用于一系列半导体系统,适合利用消费和工业应用中的热源发电,包括热电池。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High-efficiency air-bridge thermophotovoltaic cells

High-efficiency air-bridge thermophotovoltaic cells

High-efficiency air-bridge thermophotovoltaic cells

Thermophotovoltaic (TPV) cells generate electricity by converting infrared radiation emitted by a hot thermal source. Air-bridge TPVs have demonstrated enhanced power conversion efficiencies by recuperating a large amount of power carried by below-band-gap (out-of-band) photons. Here, we demonstrate single-junction InGaAs(P) air-bridge TPVs that exhibit up to 44% efficiency under 1,435°C blackbody illumination. The air-bridge design leads to near-unity reflectance (97%–99%) of out-of-band photons for ternary and quaternary TPVs whose band gaps range from 0.74 to 1.1 eV. These results suggest the applicability of the air-bridge cells to a range of semiconductor systems suitable for electricity generation from thermal sources found in both consumer and industrial applications, including thermal batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Joule
Joule Energy-General Energy
CiteScore
53.10
自引率
2.00%
发文量
198
期刊介绍: Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信