{"title":"肠道微生物代谢物靶向成纤维细胞样滑膜细胞中的 HDAC3-FOXK1-干扰素轴,从而改善类风湿性关节炎","authors":"Hongzhen Chen, Xuekun Fu, Xiaohao Wu, Junyi Zhao, Fang Qiu, Zhenghong Wang, Zhuqian Wang, Xinxin Chen, Duoli Xie, Jie Huang, Junyu Fan, Xu Yang, Yi Song, Jie Li, Dongyi He, Guozhi Xiao, Aiping Lu, Chao Liang","doi":"10.1038/s41413-024-00336-6","DOIUrl":null,"url":null,"abstract":"<p>Rheumatoid arthritis (RA) is an autoimmune disease. Early studies hold an opinion that gut microbiota is environmentally acquired and associated with RA susceptibility. However, accumulating evidence demonstrates that genetics also shape the gut microbiota. It is known that some strains of inbred laboratory mice are highly susceptible to collagen-induced arthritis (CIA), while the others are resistant to CIA. Here, we show that transplantation of fecal microbiota of CIA-resistant C57BL/6J mice to CIA-susceptible DBA/1J mice confer CIA resistance in DBA/1J mice. C57BL/6J mice and healthy human individuals have enriched <i>B. fragilis</i> than DBA/1J mice and RA patients. Transplantation of <i>B. fragilis</i> prevents CIA in DBA/1J mice. We identify that <i>B. fragilis</i> mainly produces propionate and C57BL/6J mice and healthy human individuals have higher level of propionate. Fibroblast-like synoviocytes (FLSs) in RA are activated to undergo tumor-like transformation. Propionate disrupts HDAC3-FOXK1 interaction to increase acetylation of FOXK1, resulting in reduced FOXK1 stability, blocked interferon signaling and deactivation of RA-FLSs. We treat CIA mice with propionate and show that propionate attenuates CIA. Moreover, a combination of propionate with anti-TNF etanercept synergistically relieves CIA. These results suggest that <i>B. fragilis</i> or propionate could be an alternative or complementary approach to the current therapies.</p><figure></figure>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":null,"pages":null},"PeriodicalIF":14.3000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gut microbial metabolite targets HDAC3-FOXK1-interferon axis in fibroblast-like synoviocytes to ameliorate rheumatoid arthritis\",\"authors\":\"Hongzhen Chen, Xuekun Fu, Xiaohao Wu, Junyi Zhao, Fang Qiu, Zhenghong Wang, Zhuqian Wang, Xinxin Chen, Duoli Xie, Jie Huang, Junyu Fan, Xu Yang, Yi Song, Jie Li, Dongyi He, Guozhi Xiao, Aiping Lu, Chao Liang\",\"doi\":\"10.1038/s41413-024-00336-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Rheumatoid arthritis (RA) is an autoimmune disease. Early studies hold an opinion that gut microbiota is environmentally acquired and associated with RA susceptibility. However, accumulating evidence demonstrates that genetics also shape the gut microbiota. It is known that some strains of inbred laboratory mice are highly susceptible to collagen-induced arthritis (CIA), while the others are resistant to CIA. Here, we show that transplantation of fecal microbiota of CIA-resistant C57BL/6J mice to CIA-susceptible DBA/1J mice confer CIA resistance in DBA/1J mice. C57BL/6J mice and healthy human individuals have enriched <i>B. fragilis</i> than DBA/1J mice and RA patients. Transplantation of <i>B. fragilis</i> prevents CIA in DBA/1J mice. We identify that <i>B. fragilis</i> mainly produces propionate and C57BL/6J mice and healthy human individuals have higher level of propionate. Fibroblast-like synoviocytes (FLSs) in RA are activated to undergo tumor-like transformation. Propionate disrupts HDAC3-FOXK1 interaction to increase acetylation of FOXK1, resulting in reduced FOXK1 stability, blocked interferon signaling and deactivation of RA-FLSs. We treat CIA mice with propionate and show that propionate attenuates CIA. Moreover, a combination of propionate with anti-TNF etanercept synergistically relieves CIA. These results suggest that <i>B. fragilis</i> or propionate could be an alternative or complementary approach to the current therapies.</p><figure></figure>\",\"PeriodicalId\":9134,\"journal\":{\"name\":\"Bone Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bone Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41413-024-00336-6\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bone Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41413-024-00336-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
摘要
类风湿性关节炎(RA)是一种自身免疫性疾病。早期的研究认为,肠道微生物群是由环境获得的,与类风湿关节炎的易感性有关。然而,越来越多的证据表明,遗传也会影响肠道微生物群。众所周知,一些近交系实验室小鼠对胶原诱导的关节炎(CIA)非常易感,而另一些则对CIA有抵抗力。在这里,我们展示了将对 CIA 有抵抗力的 C57BL/6J 小鼠的粪便微生物群移植到对 CIA 易感的 DBA/1J 小鼠体内,可赋予 DBA/1J 小鼠对 CIA 的抵抗力。与DBA/1J小鼠和RA患者相比,C57BL/6J小鼠和健康人富含脆弱拟杆菌。移植脆弱拟杆菌可预防DBA/1J小鼠的CIA。我们发现B. fragilis主要产生丙酸盐,而C57BL/6J小鼠和健康人体内丙酸盐含量较高。RA中的纤维母细胞样滑膜细胞(FLSs)被激活,发生肿瘤样转化。丙酸盐会破坏 HDAC3-FOXK1 的相互作用,从而增加 FOXK1 的乙酰化,导致 FOXK1 稳定性降低、干扰素信号传导受阻以及 RA-FLS 失活。我们用丙酸盐治疗 CIA 小鼠,结果表明丙酸盐可减轻 CIA。此外,丙酸盐与抗肿瘤坏死因子依那西普(etanercept)联合使用可协同缓解CIA。这些结果表明,B. fragilis或丙酸盐可以作为当前疗法的替代或补充方法。
Gut microbial metabolite targets HDAC3-FOXK1-interferon axis in fibroblast-like synoviocytes to ameliorate rheumatoid arthritis
Rheumatoid arthritis (RA) is an autoimmune disease. Early studies hold an opinion that gut microbiota is environmentally acquired and associated with RA susceptibility. However, accumulating evidence demonstrates that genetics also shape the gut microbiota. It is known that some strains of inbred laboratory mice are highly susceptible to collagen-induced arthritis (CIA), while the others are resistant to CIA. Here, we show that transplantation of fecal microbiota of CIA-resistant C57BL/6J mice to CIA-susceptible DBA/1J mice confer CIA resistance in DBA/1J mice. C57BL/6J mice and healthy human individuals have enriched B. fragilis than DBA/1J mice and RA patients. Transplantation of B. fragilis prevents CIA in DBA/1J mice. We identify that B. fragilis mainly produces propionate and C57BL/6J mice and healthy human individuals have higher level of propionate. Fibroblast-like synoviocytes (FLSs) in RA are activated to undergo tumor-like transformation. Propionate disrupts HDAC3-FOXK1 interaction to increase acetylation of FOXK1, resulting in reduced FOXK1 stability, blocked interferon signaling and deactivation of RA-FLSs. We treat CIA mice with propionate and show that propionate attenuates CIA. Moreover, a combination of propionate with anti-TNF etanercept synergistically relieves CIA. These results suggest that B. fragilis or propionate could be an alternative or complementary approach to the current therapies.
期刊介绍:
Established in 2013, Bone Research is a newly-founded English-language periodical that centers on the basic and clinical facets of bone biology, pathophysiology, and regeneration. It is dedicated to championing key findings emerging from both basic investigations and clinical research concerning bone-related topics. The journal's objective is to globally disseminate research in bone-related physiology, pathology, diseases, and treatment, contributing to the advancement of knowledge in this field.