Hao Pan, Menglin Zhu, Ella Banyas, Louis Alaerts, Megha Acharya, Hongrui Zhang, Jiyeob Kim, Xianzhe Chen, Xiaoxi Huang, Michael Xu, Isaac Harris, Zishen Tian, Francesco Ricci, Brendan Hanrahan, Jonathan E. Spanier, Geoffroy Hautier, James M. LeBeau, Jeffrey B. Neaton, Lane W. Martin
{"title":"钳位可增强反铁电薄膜的机电响应","authors":"Hao Pan, Menglin Zhu, Ella Banyas, Louis Alaerts, Megha Acharya, Hongrui Zhang, Jiyeob Kim, Xianzhe Chen, Xiaoxi Huang, Michael Xu, Isaac Harris, Zishen Tian, Francesco Ricci, Brendan Hanrahan, Jonathan E. Spanier, Geoffroy Hautier, James M. LeBeau, Jeffrey B. Neaton, Lane W. Martin","doi":"10.1038/s41563-024-01907-y","DOIUrl":null,"url":null,"abstract":"Thin-film materials with large electromechanical responses are fundamental enablers of next-generation micro-/nano-electromechanical applications. Conventional electromechanical materials (for example, ferroelectrics and relaxors), however, exhibit severely degraded responses when scaled down to submicrometre-thick films due to substrate constraints (clamping). This limitation is overcome, and substantial electromechanical responses in antiferroelectric thin films are achieved through an unconventional coupling of the field-induced antiferroelectric-to-ferroelectric phase transition and the substrate constraints. A detilting of the oxygen octahedra and lattice-volume expansion in all dimensions are observed commensurate with the phase transition using operando electron microscopy, such that the in-plane clamping further enhances the out-of-plane expansion, as rationalized using first-principles calculations. In turn, a non-traditional thickness scaling is realized wherein an electromechanical strain (1.7%) is produced from a model antiferroelectric PbZrO3 film that is just 100 nm thick. The high performance and understanding of the mechanism provide a promising pathway to develop high-performance micro-/nano-electromechanical systems. Here, the authors observe that in thin films of antiferroelectric PbZrO3, substrate clamping enhances the electromechanical response, with expansion purely in the out-of-plane direction, achieving 1.7% strain for 100-nm-thick films.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"23 7","pages":"944-950"},"PeriodicalIF":37.2000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clamping enables enhanced electromechanical responses in antiferroelectric thin films\",\"authors\":\"Hao Pan, Menglin Zhu, Ella Banyas, Louis Alaerts, Megha Acharya, Hongrui Zhang, Jiyeob Kim, Xianzhe Chen, Xiaoxi Huang, Michael Xu, Isaac Harris, Zishen Tian, Francesco Ricci, Brendan Hanrahan, Jonathan E. Spanier, Geoffroy Hautier, James M. LeBeau, Jeffrey B. Neaton, Lane W. Martin\",\"doi\":\"10.1038/s41563-024-01907-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thin-film materials with large electromechanical responses are fundamental enablers of next-generation micro-/nano-electromechanical applications. Conventional electromechanical materials (for example, ferroelectrics and relaxors), however, exhibit severely degraded responses when scaled down to submicrometre-thick films due to substrate constraints (clamping). This limitation is overcome, and substantial electromechanical responses in antiferroelectric thin films are achieved through an unconventional coupling of the field-induced antiferroelectric-to-ferroelectric phase transition and the substrate constraints. A detilting of the oxygen octahedra and lattice-volume expansion in all dimensions are observed commensurate with the phase transition using operando electron microscopy, such that the in-plane clamping further enhances the out-of-plane expansion, as rationalized using first-principles calculations. In turn, a non-traditional thickness scaling is realized wherein an electromechanical strain (1.7%) is produced from a model antiferroelectric PbZrO3 film that is just 100 nm thick. The high performance and understanding of the mechanism provide a promising pathway to develop high-performance micro-/nano-electromechanical systems. Here, the authors observe that in thin films of antiferroelectric PbZrO3, substrate clamping enhances the electromechanical response, with expansion purely in the out-of-plane direction, achieving 1.7% strain for 100-nm-thick films.\",\"PeriodicalId\":19058,\"journal\":{\"name\":\"Nature Materials\",\"volume\":\"23 7\",\"pages\":\"944-950\"},\"PeriodicalIF\":37.2000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41563-024-01907-y\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41563-024-01907-y","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Clamping enables enhanced electromechanical responses in antiferroelectric thin films
Thin-film materials with large electromechanical responses are fundamental enablers of next-generation micro-/nano-electromechanical applications. Conventional electromechanical materials (for example, ferroelectrics and relaxors), however, exhibit severely degraded responses when scaled down to submicrometre-thick films due to substrate constraints (clamping). This limitation is overcome, and substantial electromechanical responses in antiferroelectric thin films are achieved through an unconventional coupling of the field-induced antiferroelectric-to-ferroelectric phase transition and the substrate constraints. A detilting of the oxygen octahedra and lattice-volume expansion in all dimensions are observed commensurate with the phase transition using operando electron microscopy, such that the in-plane clamping further enhances the out-of-plane expansion, as rationalized using first-principles calculations. In turn, a non-traditional thickness scaling is realized wherein an electromechanical strain (1.7%) is produced from a model antiferroelectric PbZrO3 film that is just 100 nm thick. The high performance and understanding of the mechanism provide a promising pathway to develop high-performance micro-/nano-electromechanical systems. Here, the authors observe that in thin films of antiferroelectric PbZrO3, substrate clamping enhances the electromechanical response, with expansion purely in the out-of-plane direction, achieving 1.7% strain for 100-nm-thick films.
期刊介绍:
Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology.
Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines.
Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.