通过哌嗪盐分子修饰提高宽带隙过氧化物太阳能电池的效率和稳定性

IF 8.2 1区 化学 Q1 CHEMISTRY, ANALYTICAL
ACS Sensors Pub Date : 2024-05-22 DOI:10.1002/aenm.202304429
Yi Luo, Jingwei Zhu, Xinxing Yin, Wenbo Jiao, Zhiyu Gao, Yuliang Xu, Changlei Wang, Yang Wang, Huagui Lai, Hao Huang, Jincheng Luo, Juncheng Wang, Jiayu You, Zhihao Zhang, Xia Hao, Guanggen Zeng, Shengqiang Ren, Zaifang Li, Fan Fu, Minghui Li, Chuanxiao Xiao, Cong Chen, Dewei Zhao
{"title":"通过哌嗪盐分子修饰提高宽带隙过氧化物太阳能电池的效率和稳定性","authors":"Yi Luo,&nbsp;Jingwei Zhu,&nbsp;Xinxing Yin,&nbsp;Wenbo Jiao,&nbsp;Zhiyu Gao,&nbsp;Yuliang Xu,&nbsp;Changlei Wang,&nbsp;Yang Wang,&nbsp;Huagui Lai,&nbsp;Hao Huang,&nbsp;Jincheng Luo,&nbsp;Juncheng Wang,&nbsp;Jiayu You,&nbsp;Zhihao Zhang,&nbsp;Xia Hao,&nbsp;Guanggen Zeng,&nbsp;Shengqiang Ren,&nbsp;Zaifang Li,&nbsp;Fan Fu,&nbsp;Minghui Li,&nbsp;Chuanxiao Xiao,&nbsp;Cong Chen,&nbsp;Dewei Zhao","doi":"10.1002/aenm.202304429","DOIUrl":null,"url":null,"abstract":"<p>Wide-bandgap (WBG) perovskite solar cell (PSC) plays a pivotal role as the top subcell in all-perovskite tandem solar cells (TSCs), facilitating the absorption of high-energy photons and affording a large open-circuit voltage (<i>V</i><sub>OC</sub>). Nonetheless, the stability and efficiency of WBG PSCs are constrained by light-induced halide segregation and non-radiative recombination losses. In this study, this work presents an approach of utilizing 2-methylpiperazinium bromide (2-MePBr) via interfacial engineering to realize high-efficiency WBG (1.77 eV) PSCs. The C─NH─C functional group in 2-MePBr, serving as an electron donor, can interact with under-coordinated lead defects at the perovskite surface. Consequently, the treatment with 2-MePBr mitigates interfacial non-radiative recombination, enhances charge transport, inhibits ion migration, and thus delivers an improved power conversion efficiency (PCE) of 19.30% with a <i>V</i><sub>OC</sub> of 1.29 V, and a fill factor of 83.08%. Notably, the WBG PSCs manifest enhanced stability, preserving 80% of the initial PCE after 337 h of continuous operation under 1 sun illumination at the maximum power point. Furthermore, the all-perovskite TSCs based on this WBG subcell achieve a PCE of 27.47%, showing its promising application in perovskite-based tandem solar cells.</p>","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":null,"pages":null},"PeriodicalIF":8.2000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Efficiency and Stability of Wide-Bandgap Perovskite Solar Cells Via Molecular Modification with Piperazinium Salt\",\"authors\":\"Yi Luo,&nbsp;Jingwei Zhu,&nbsp;Xinxing Yin,&nbsp;Wenbo Jiao,&nbsp;Zhiyu Gao,&nbsp;Yuliang Xu,&nbsp;Changlei Wang,&nbsp;Yang Wang,&nbsp;Huagui Lai,&nbsp;Hao Huang,&nbsp;Jincheng Luo,&nbsp;Juncheng Wang,&nbsp;Jiayu You,&nbsp;Zhihao Zhang,&nbsp;Xia Hao,&nbsp;Guanggen Zeng,&nbsp;Shengqiang Ren,&nbsp;Zaifang Li,&nbsp;Fan Fu,&nbsp;Minghui Li,&nbsp;Chuanxiao Xiao,&nbsp;Cong Chen,&nbsp;Dewei Zhao\",\"doi\":\"10.1002/aenm.202304429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Wide-bandgap (WBG) perovskite solar cell (PSC) plays a pivotal role as the top subcell in all-perovskite tandem solar cells (TSCs), facilitating the absorption of high-energy photons and affording a large open-circuit voltage (<i>V</i><sub>OC</sub>). Nonetheless, the stability and efficiency of WBG PSCs are constrained by light-induced halide segregation and non-radiative recombination losses. In this study, this work presents an approach of utilizing 2-methylpiperazinium bromide (2-MePBr) via interfacial engineering to realize high-efficiency WBG (1.77 eV) PSCs. The C─NH─C functional group in 2-MePBr, serving as an electron donor, can interact with under-coordinated lead defects at the perovskite surface. Consequently, the treatment with 2-MePBr mitigates interfacial non-radiative recombination, enhances charge transport, inhibits ion migration, and thus delivers an improved power conversion efficiency (PCE) of 19.30% with a <i>V</i><sub>OC</sub> of 1.29 V, and a fill factor of 83.08%. Notably, the WBG PSCs manifest enhanced stability, preserving 80% of the initial PCE after 337 h of continuous operation under 1 sun illumination at the maximum power point. Furthermore, the all-perovskite TSCs based on this WBG subcell achieve a PCE of 27.47%, showing its promising application in perovskite-based tandem solar cells.</p>\",\"PeriodicalId\":24,\"journal\":{\"name\":\"ACS Sensors\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Sensors\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aenm.202304429\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aenm.202304429","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

宽带隙(WBG)过氧化物太阳能电池(PSC)作为全过氧化物串联太阳能电池(TSC)的顶层子电池发挥着关键作用,有利于吸收高能光子并提供较大的开路电压(VOC)。然而,WBG PSCs 的稳定性和效率受到光诱导卤化物偏析和非辐射重组损耗的制约。本研究提出了一种通过界面工程利用 2-甲基哌嗪溴化物(2-MePBr)实现高效 WBG(1.77 eV)PSC 的方法。2-MePBr 中的 C─NH─C 官能团可作为电子供体,与过氧化物表面的欠配位铅缺陷相互作用。因此,用 2-MePBr 处理可减轻界面非辐射性重组,增强电荷传输,抑制离子迁移,从而将功率转换效率 (PCE) 提高到 19.30%,VOC 为 1.29 V,填充因子为 83.08%。值得注意的是,WBG PSCs 具有更高的稳定性,在最大功率点的太阳光照射下连续工作 337 小时后,仍能保持 80% 的初始 PCE。此外,基于这种 WBG 子电池的全过氧化物 TSC 实现了 27.47% 的 PCE,显示了它在基于过氧化物的串联太阳能电池中的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhanced Efficiency and Stability of Wide-Bandgap Perovskite Solar Cells Via Molecular Modification with Piperazinium Salt

Enhanced Efficiency and Stability of Wide-Bandgap Perovskite Solar Cells Via Molecular Modification with Piperazinium Salt

Wide-bandgap (WBG) perovskite solar cell (PSC) plays a pivotal role as the top subcell in all-perovskite tandem solar cells (TSCs), facilitating the absorption of high-energy photons and affording a large open-circuit voltage (VOC). Nonetheless, the stability and efficiency of WBG PSCs are constrained by light-induced halide segregation and non-radiative recombination losses. In this study, this work presents an approach of utilizing 2-methylpiperazinium bromide (2-MePBr) via interfacial engineering to realize high-efficiency WBG (1.77 eV) PSCs. The C─NH─C functional group in 2-MePBr, serving as an electron donor, can interact with under-coordinated lead defects at the perovskite surface. Consequently, the treatment with 2-MePBr mitigates interfacial non-radiative recombination, enhances charge transport, inhibits ion migration, and thus delivers an improved power conversion efficiency (PCE) of 19.30% with a VOC of 1.29 V, and a fill factor of 83.08%. Notably, the WBG PSCs manifest enhanced stability, preserving 80% of the initial PCE after 337 h of continuous operation under 1 sun illumination at the maximum power point. Furthermore, the all-perovskite TSCs based on this WBG subcell achieve a PCE of 27.47%, showing its promising application in perovskite-based tandem solar cells.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Sensors
ACS Sensors Chemical Engineering-Bioengineering
CiteScore
14.50
自引率
3.40%
发文量
372
期刊介绍: ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信