TET 活性可在胚胎休眠期保障多能性

IF 12.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Maximilian Stötzel, Chieh-Yu Cheng, Ibrahim A. IIik, Abhishek Sampath Kumar, Persia Akbari Omgba, Vera A. van der Weijden, Yufei Zhang, Martin Vingron, Alexander Meissner, Tuğçe Aktaş, Helene Kretzmer, Aydan Bulut-Karslioğlu
{"title":"TET 活性可在胚胎休眠期保障多能性","authors":"Maximilian Stötzel, Chieh-Yu Cheng, Ibrahim A. IIik, Abhishek Sampath Kumar, Persia Akbari Omgba, Vera A. van der Weijden, Yufei Zhang, Martin Vingron, Alexander Meissner, Tuğçe Aktaş, Helene Kretzmer, Aydan Bulut-Karslioğlu","doi":"10.1038/s41594-024-01313-7","DOIUrl":null,"url":null,"abstract":"Dormancy is an essential biological process for the propagation of many life forms through generations and stressful conditions. Early embryos of many mammals are preservable for weeks to months within the uterus in a dormant state called diapause, which can be induced in vitro through mTOR inhibition. Cellular strategies that safeguard original cell identity within the silent genomic landscape of dormancy are not known. Here we show that the protection of cis-regulatory elements from silencing is key to maintaining pluripotency in the dormant state. We reveal a TET–transcription factor axis, in which TET-mediated DNA demethylation and recruitment of methylation-sensitive transcription factor TFE3 drive transcriptionally inert chromatin adaptations during dormancy transition. Perturbation of TET activity compromises pluripotency and survival of mouse embryos under dormancy, whereas its enhancement improves survival rates. Our results reveal an essential mechanism for propagating the cellular identity of dormant cells, with implications for regeneration and disease. Here the authors show that active DNA demethylation and transcription factor occupation at distal regulatory elements is essential for pluripotency maintenance in dormancy conditions.","PeriodicalId":49141,"journal":{"name":"Nature Structural & Molecular Biology","volume":"31 10","pages":"1625-1639"},"PeriodicalIF":12.5000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41594-024-01313-7.pdf","citationCount":"0","resultStr":"{\"title\":\"TET activity safeguards pluripotency throughout embryonic dormancy\",\"authors\":\"Maximilian Stötzel, Chieh-Yu Cheng, Ibrahim A. IIik, Abhishek Sampath Kumar, Persia Akbari Omgba, Vera A. van der Weijden, Yufei Zhang, Martin Vingron, Alexander Meissner, Tuğçe Aktaş, Helene Kretzmer, Aydan Bulut-Karslioğlu\",\"doi\":\"10.1038/s41594-024-01313-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dormancy is an essential biological process for the propagation of many life forms through generations and stressful conditions. Early embryos of many mammals are preservable for weeks to months within the uterus in a dormant state called diapause, which can be induced in vitro through mTOR inhibition. Cellular strategies that safeguard original cell identity within the silent genomic landscape of dormancy are not known. Here we show that the protection of cis-regulatory elements from silencing is key to maintaining pluripotency in the dormant state. We reveal a TET–transcription factor axis, in which TET-mediated DNA demethylation and recruitment of methylation-sensitive transcription factor TFE3 drive transcriptionally inert chromatin adaptations during dormancy transition. Perturbation of TET activity compromises pluripotency and survival of mouse embryos under dormancy, whereas its enhancement improves survival rates. Our results reveal an essential mechanism for propagating the cellular identity of dormant cells, with implications for regeneration and disease. Here the authors show that active DNA demethylation and transcription factor occupation at distal regulatory elements is essential for pluripotency maintenance in dormancy conditions.\",\"PeriodicalId\":49141,\"journal\":{\"name\":\"Nature Structural & Molecular Biology\",\"volume\":\"31 10\",\"pages\":\"1625-1639\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41594-024-01313-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Structural & Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41594-024-01313-7\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Structural & Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41594-024-01313-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

休眠是许多生命形式在世代交替和压力条件下繁殖的重要生物过程。许多哺乳动物的早期胚胎可在子宫内保存数周至数月,这种休眠状态称为休眠期,可通过抑制 mTOR 在体外诱导。在休眠的无声基因组景观中保护原始细胞身份的细胞策略尚不清楚。在这里,我们发现保护顺式调控元件不被沉默是在休眠状态下维持多能性的关键。我们揭示了一个 TET-转录因子轴,其中 TET 介导的 DNA 去甲基化和甲基化敏感转录因子 TFE3 的招募在休眠转换期间驱动转录惰性染色质适应。干扰 TET 活性会损害休眠状态下小鼠胚胎的多能性和存活率,而增强 TET 活性则会提高存活率。我们的研究结果揭示了一种传播休眠细胞特性的重要机制,对再生和疾病具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

TET activity safeguards pluripotency throughout embryonic dormancy

TET activity safeguards pluripotency throughout embryonic dormancy

TET activity safeguards pluripotency throughout embryonic dormancy
Dormancy is an essential biological process for the propagation of many life forms through generations and stressful conditions. Early embryos of many mammals are preservable for weeks to months within the uterus in a dormant state called diapause, which can be induced in vitro through mTOR inhibition. Cellular strategies that safeguard original cell identity within the silent genomic landscape of dormancy are not known. Here we show that the protection of cis-regulatory elements from silencing is key to maintaining pluripotency in the dormant state. We reveal a TET–transcription factor axis, in which TET-mediated DNA demethylation and recruitment of methylation-sensitive transcription factor TFE3 drive transcriptionally inert chromatin adaptations during dormancy transition. Perturbation of TET activity compromises pluripotency and survival of mouse embryos under dormancy, whereas its enhancement improves survival rates. Our results reveal an essential mechanism for propagating the cellular identity of dormant cells, with implications for regeneration and disease. Here the authors show that active DNA demethylation and transcription factor occupation at distal regulatory elements is essential for pluripotency maintenance in dormancy conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Structural & Molecular Biology
Nature Structural & Molecular Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-BIOPHYSICS
CiteScore
22.00
自引率
1.80%
发文量
160
审稿时长
3-8 weeks
期刊介绍: Nature Structural & Molecular Biology is a comprehensive platform that combines structural and molecular research. Our journal focuses on exploring the functional and mechanistic aspects of biological processes, emphasizing how molecular components collaborate to achieve a particular function. While structural data can shed light on these insights, our publication does not require them as a prerequisite.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信