用于气候模型评估的贝叶斯结构学习

IF 4.4 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Terence J. O'Kane, Dylan Harries, Mark A. Collier
{"title":"用于气候模型评估的贝叶斯结构学习","authors":"Terence J. O'Kane,&nbsp;Dylan Harries,&nbsp;Mark A. Collier","doi":"10.1029/2023MS004034","DOIUrl":null,"url":null,"abstract":"<p>A Bayesian structure learning approach is employed to compare and contrast interactions between the major climate teleconnections over the recent past as revealed in reanalyses and climate model simulations from leading Meteorological Centers. In a previous study, the authors demonstrated a general framework using homogeneous Dynamic Bayesian Network models constructed from reanalyzed time series of empirical climate indices to compare probabilistic graphical models. Reversible jump Markov Chain Monte Carlo is used to provide uncertainty quantification for selecting the respective network structures. The incorporation of confidence measures in structural features provided by the Bayesian approach is key to yielding informative measures of the differences between products if network-based approaches are to be used for model evaluation, particularly as point estimates alone may understate the relevant uncertainties. Here we compare models fitted from the NCEP/NCAR and JRA-55 reanalyses and Coupled Model Intercomparison Project version 5 (CMIP5) historical simulations in terms of associations for which there is high posterior confidence. Examination of differences in the posterior probabilities assigned to edges of the directed acyclic graph provides a quantitative summary of departures in the CMIP5 models from reanalyses. In general terms the climate model simulations are in better agreement with reanalyses where tropical processes dominate, and autocorrelation time scales are long. Seasonal effects are shown to be important when examining tropical-extratropical interactions with the greatest discrepancies and largest uncertainties present for the Southern Hemisphere teleconnections.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023MS004034","citationCount":"0","resultStr":"{\"title\":\"Bayesian Structure Learning for Climate Model Evaluation\",\"authors\":\"Terence J. O'Kane,&nbsp;Dylan Harries,&nbsp;Mark A. Collier\",\"doi\":\"10.1029/2023MS004034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A Bayesian structure learning approach is employed to compare and contrast interactions between the major climate teleconnections over the recent past as revealed in reanalyses and climate model simulations from leading Meteorological Centers. In a previous study, the authors demonstrated a general framework using homogeneous Dynamic Bayesian Network models constructed from reanalyzed time series of empirical climate indices to compare probabilistic graphical models. Reversible jump Markov Chain Monte Carlo is used to provide uncertainty quantification for selecting the respective network structures. The incorporation of confidence measures in structural features provided by the Bayesian approach is key to yielding informative measures of the differences between products if network-based approaches are to be used for model evaluation, particularly as point estimates alone may understate the relevant uncertainties. Here we compare models fitted from the NCEP/NCAR and JRA-55 reanalyses and Coupled Model Intercomparison Project version 5 (CMIP5) historical simulations in terms of associations for which there is high posterior confidence. Examination of differences in the posterior probabilities assigned to edges of the directed acyclic graph provides a quantitative summary of departures in the CMIP5 models from reanalyses. In general terms the climate model simulations are in better agreement with reanalyses where tropical processes dominate, and autocorrelation time scales are long. Seasonal effects are shown to be important when examining tropical-extratropical interactions with the greatest discrepancies and largest uncertainties present for the Southern Hemisphere teleconnections.</p>\",\"PeriodicalId\":14881,\"journal\":{\"name\":\"Journal of Advances in Modeling Earth Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023MS004034\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advances in Modeling Earth Systems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2023MS004034\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023MS004034","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

作者采用贝叶斯结构学习方法,比较和对比了主要气象中心的再分析和气候模式模拟所揭示的近期主要气候远程联系之间的相互作用。在之前的一项研究中,作者展示了一个通用框架,利用由经验气候指数的再分析时间序列构建的同质动态贝叶斯网络模型来比较概率图形模型。可逆跃迁马尔可夫链蒙特卡罗用于为选择各自的网络结构提供不确定性量化。如果要使用基于网络的方法对模型进行评估,贝叶斯方法提供的结构特征中的置信度措施是产生产品之间差异的信息措施的关键,尤其是仅靠点估计可能会低估相关的不确定性。在这里,我们比较了从 NCEP/NCAR 和 JRA-55 再分析和耦合模式相互比较项目第 5 版(CMIP5)历史模拟中拟合出来的模式,这些模式的关联具有很高的后验置信度。对有向无环图边缘的后验概率差异的研究,提供了 CMIP5 模式与再分析偏差的定量总结。一般来说,在热带过程占主导地位、自相关时间尺度较长的地方,气候模式模拟结果与再分析结果更一致。在研究热带-南极热带相互作用时,季节效应非常重要,南半球遥联系的差异最大,不确定性也最大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Bayesian Structure Learning for Climate Model Evaluation

Bayesian Structure Learning for Climate Model Evaluation

A Bayesian structure learning approach is employed to compare and contrast interactions between the major climate teleconnections over the recent past as revealed in reanalyses and climate model simulations from leading Meteorological Centers. In a previous study, the authors demonstrated a general framework using homogeneous Dynamic Bayesian Network models constructed from reanalyzed time series of empirical climate indices to compare probabilistic graphical models. Reversible jump Markov Chain Monte Carlo is used to provide uncertainty quantification for selecting the respective network structures. The incorporation of confidence measures in structural features provided by the Bayesian approach is key to yielding informative measures of the differences between products if network-based approaches are to be used for model evaluation, particularly as point estimates alone may understate the relevant uncertainties. Here we compare models fitted from the NCEP/NCAR and JRA-55 reanalyses and Coupled Model Intercomparison Project version 5 (CMIP5) historical simulations in terms of associations for which there is high posterior confidence. Examination of differences in the posterior probabilities assigned to edges of the directed acyclic graph provides a quantitative summary of departures in the CMIP5 models from reanalyses. In general terms the climate model simulations are in better agreement with reanalyses where tropical processes dominate, and autocorrelation time scales are long. Seasonal effects are shown to be important when examining tropical-extratropical interactions with the greatest discrepancies and largest uncertainties present for the Southern Hemisphere teleconnections.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Advances in Modeling Earth Systems
Journal of Advances in Modeling Earth Systems METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
11.40
自引率
11.80%
发文量
241
审稿时长
>12 weeks
期刊介绍: The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community. Open access. Articles are available free of charge for everyone with Internet access to view and download. Formal peer review. Supplemental material, such as code samples, images, and visualizations, is published at no additional charge. No additional charge for color figures. Modest page charges to cover production costs. Articles published in high-quality full text PDF, HTML, and XML. Internal and external reference linking, DOI registration, and forward linking via CrossRef.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信