用于高温储能应用的环保型 Li(1-x)Smx/3NbO3 陶瓷的电学和光学特性

Energy Storage Pub Date : 2024-05-23 DOI:10.1002/est2.642
Satyendra Kumar Satyarthi, Vishwa Pratap Singh, Harish Verma, Akhilesh Kumar Singh
{"title":"用于高温储能应用的环保型 Li(1-x)Smx/3NbO3 陶瓷的电学和光学特性","authors":"Satyendra Kumar Satyarthi,&nbsp;Vishwa Pratap Singh,&nbsp;Harish Verma,&nbsp;Akhilesh Kumar Singh","doi":"10.1002/est2.642","DOIUrl":null,"url":null,"abstract":"<p>This research article delves into the synthesis and characterization of Li<sub>(1-<i>x</i>)</sub>Sm<sub>(<i>x</i>/3)</sub>NbO<sub>3</sub> ceramic, employing a high-energy ball milling process. The investigation explores the incorporation of Sm<sup>3+</sup> at the Li<sup>+1</sup> site across a range of compositions (<i>x</i> = 0, 0.01, 0.02, 0.03, 0.04, 0.05). Structural analysis, using x-ray diffraction (XRD) and Rietveld structural refinement, establishes that within the investigated composition range, no significant changes in the crystal structure are evident. The x-ray photoelectron spectroscopy revealed the presence of oxygen vacancies as well as the stable oxidation state of different elements like O<sup>2−</sup>, Nb<sup>5+</sup>, Sm<sup>3+</sup>, and Li<sup>1+</sup>. At sintering temperature 1050°C, the average grain sizes vary approximately from 1.5 to 3.8 μm for different compositions with regular grain morphology. The UV-Vis analysis reveals a noteworthy reduction in the band gap to 3.09 eV for the <i>x</i> = 0.01 composition. Photoluminescence studies exhibit distinct green, orange, and red bands, with the highest intensity observed for <i>x</i> = 0.01, showcasing promising optical properties. The dielectric permittivity of Sm-substituted compositions surpasses the response of pure LiNbO<sub>3</sub>, demonstrating an increasing trend with temperature in the frequency range 100 Hz-1 MHz intriguingly, no Curie temperature is observed up to 500°C for any composition. The polarization vs electric field hysteresis loop response highlights better polarization characteristics at the room temperature and maximum polarization is 0.66 μC/cm<sup>2</sup> for the composition <i>x</i> = 0.05. The energy storage response of the developed compositions is investigated, which reveals a maximum efficiency of 46.64% for <i>x</i> = 0.04 in Li<sub>(1-<i>x</i>)</sub>Sm<sub>(<i>x</i>/3)</sub>NbO<sub>3</sub>. The tunable optical properties, enhanced dielectric response, and notable energy efficiency of these high <i>T</i><sub>C</sub> ceramics suggest their utility across diverse applications. These findings not only contribute to the understanding of functional ceramic materials but also pave the way for their optimized utilization in advanced technological applications, particularly in energy storage devices under nonambient conditions at high temperatures.</p>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrical and optical properties of environmental friendly Li(1-x)Smx/3NbO3 ceramics for high-temperature energy storage applications\",\"authors\":\"Satyendra Kumar Satyarthi,&nbsp;Vishwa Pratap Singh,&nbsp;Harish Verma,&nbsp;Akhilesh Kumar Singh\",\"doi\":\"10.1002/est2.642\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This research article delves into the synthesis and characterization of Li<sub>(1-<i>x</i>)</sub>Sm<sub>(<i>x</i>/3)</sub>NbO<sub>3</sub> ceramic, employing a high-energy ball milling process. The investigation explores the incorporation of Sm<sup>3+</sup> at the Li<sup>+1</sup> site across a range of compositions (<i>x</i> = 0, 0.01, 0.02, 0.03, 0.04, 0.05). Structural analysis, using x-ray diffraction (XRD) and Rietveld structural refinement, establishes that within the investigated composition range, no significant changes in the crystal structure are evident. The x-ray photoelectron spectroscopy revealed the presence of oxygen vacancies as well as the stable oxidation state of different elements like O<sup>2−</sup>, Nb<sup>5+</sup>, Sm<sup>3+</sup>, and Li<sup>1+</sup>. At sintering temperature 1050°C, the average grain sizes vary approximately from 1.5 to 3.8 μm for different compositions with regular grain morphology. The UV-Vis analysis reveals a noteworthy reduction in the band gap to 3.09 eV for the <i>x</i> = 0.01 composition. Photoluminescence studies exhibit distinct green, orange, and red bands, with the highest intensity observed for <i>x</i> = 0.01, showcasing promising optical properties. The dielectric permittivity of Sm-substituted compositions surpasses the response of pure LiNbO<sub>3</sub>, demonstrating an increasing trend with temperature in the frequency range 100 Hz-1 MHz intriguingly, no Curie temperature is observed up to 500°C for any composition. The polarization vs electric field hysteresis loop response highlights better polarization characteristics at the room temperature and maximum polarization is 0.66 μC/cm<sup>2</sup> for the composition <i>x</i> = 0.05. The energy storage response of the developed compositions is investigated, which reveals a maximum efficiency of 46.64% for <i>x</i> = 0.04 in Li<sub>(1-<i>x</i>)</sub>Sm<sub>(<i>x</i>/3)</sub>NbO<sub>3</sub>. The tunable optical properties, enhanced dielectric response, and notable energy efficiency of these high <i>T</i><sub>C</sub> ceramics suggest their utility across diverse applications. These findings not only contribute to the understanding of functional ceramic materials but also pave the way for their optimized utilization in advanced technological applications, particularly in energy storage devices under nonambient conditions at high temperatures.</p>\",\"PeriodicalId\":11765,\"journal\":{\"name\":\"Energy Storage\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Storage\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/est2.642\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/est2.642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这篇研究文章采用高能球磨工艺,深入研究了 Li(1-x)Sm(x/3)NbO3 陶瓷的合成和特性。研究探讨了在不同成分(x = 0、0.01、0.02、0.03、0.04、0.05)的 Li+1 位点上加入 Sm3+的情况。利用 X 射线衍射(XRD)和 Rietveld 结构细化进行的结构分析表明,在所研究的成分范围内,晶体结构没有明显变化。X 射线光电子能谱显示存在氧空位以及不同元素的稳定氧化态,如 O2-、Nb5+、Sm3+ 和 Li1+。在烧结温度为 1050°C 时,不同成分的平均晶粒大小约为 1.5 至 3.8 μm,晶粒形态规则。紫外可见光分析表明,x = 0.01 成分的带隙明显降低到 3.09 eV。光致发光研究显示出明显的绿色、橙色和红色条带,其中 x = 0.01 的条带强度最高,显示出良好的光学特性。Sm 取代成分的介电常数超过了纯铌酸锂,在 100 Hz-1 MHz 频率范围内呈现出随温度升高而增加的趋势。极化与电场的磁滞回线响应显示,室温下的极化特性更好,成分 x = 0.05 时的最大极化为 0.66 μC/cm2。对所开发成分的储能响应进行了研究,结果显示,在 Li(1-x)Sm(x/3)NbO3 中,x = 0.04 时的最大效率为 46.64%。这些高 TC 陶瓷具有可调的光学特性、增强的介电响应和显著的能量效率,表明它们可用于多种应用领域。这些发现不仅有助于人们对功能陶瓷材料的理解,还为它们在先进技术应用中的优化利用铺平了道路,特别是在高温非环境条件下的储能设备中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Electrical and optical properties of environmental friendly Li(1-x)Smx/3NbO3 ceramics for high-temperature energy storage applications

Electrical and optical properties of environmental friendly Li(1-x)Smx/3NbO3 ceramics for high-temperature energy storage applications

This research article delves into the synthesis and characterization of Li(1-x)Sm(x/3)NbO3 ceramic, employing a high-energy ball milling process. The investigation explores the incorporation of Sm3+ at the Li+1 site across a range of compositions (x = 0, 0.01, 0.02, 0.03, 0.04, 0.05). Structural analysis, using x-ray diffraction (XRD) and Rietveld structural refinement, establishes that within the investigated composition range, no significant changes in the crystal structure are evident. The x-ray photoelectron spectroscopy revealed the presence of oxygen vacancies as well as the stable oxidation state of different elements like O2−, Nb5+, Sm3+, and Li1+. At sintering temperature 1050°C, the average grain sizes vary approximately from 1.5 to 3.8 μm for different compositions with regular grain morphology. The UV-Vis analysis reveals a noteworthy reduction in the band gap to 3.09 eV for the x = 0.01 composition. Photoluminescence studies exhibit distinct green, orange, and red bands, with the highest intensity observed for x = 0.01, showcasing promising optical properties. The dielectric permittivity of Sm-substituted compositions surpasses the response of pure LiNbO3, demonstrating an increasing trend with temperature in the frequency range 100 Hz-1 MHz intriguingly, no Curie temperature is observed up to 500°C for any composition. The polarization vs electric field hysteresis loop response highlights better polarization characteristics at the room temperature and maximum polarization is 0.66 μC/cm2 for the composition x = 0.05. The energy storage response of the developed compositions is investigated, which reveals a maximum efficiency of 46.64% for x = 0.04 in Li(1-x)Sm(x/3)NbO3. The tunable optical properties, enhanced dielectric response, and notable energy efficiency of these high TC ceramics suggest their utility across diverse applications. These findings not only contribute to the understanding of functional ceramic materials but also pave the way for their optimized utilization in advanced technological applications, particularly in energy storage devices under nonambient conditions at high temperatures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信