新型纳米多孔非晶/纳米晶复合结构 RuNiFeCo 多组分合金对氨硼烷水解脱氢具有优异的催化活性

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Shiyao Jin, Yanhui Li, Yaping Yang, Wei Zhang
{"title":"新型纳米多孔非晶/纳米晶复合结构 RuNiFeCo 多组分合金对氨硼烷水解脱氢具有优异的催化活性","authors":"Shiyao Jin,&nbsp;Yanhui Li,&nbsp;Yaping Yang,&nbsp;Wei Zhang","doi":"10.1016/j.mtnano.2024.100485","DOIUrl":null,"url":null,"abstract":"<div><p>The pursuit of high-efficient and cost-effective catalysts for hydrogen generation is imperative to address the energy crisis. Herein, nanoporous RuNiFeCo alloys (np-RuNiFeCo) with high catalytic activity for ammonia borane (AB) hydrolytic dehydrogenation have been prepared by dealloying Fe<sub>25</sub>Ni<sub><em>x</em></sub>Co<sub>40-<em>x</em></sub>Ru<sub>5</sub>B<sub>30</sub> (<em>x</em> = 0–40) high-entropy amorphous alloys with low Ru content. The np-RuNiFeCo are composed of an amorphous/hexagonal close-packed Ru nanocrystalline dual-phase structure and exhibit a uniform nanopore/ligament bicontinuous architecture. The morphology, composition, and AB hydrolysis catalytic properties of the np-RuNiFeCo can be regulated by varying the Ni/Co content in the precursors, and the best catalytic activity with a high turnover frequency value of 148.2 <span><math><mrow><msub><mtext>mol</mtext><mrow><mi>H</mi><mn>2</mn></mrow></msub><mspace></mspace><msubsup><mtext>mol</mtext><mtext>Ru</mtext><mrow><mo>‐</mo><mn>1</mn></mrow></msubsup><mspace></mspace><msup><mi>min</mi><mrow><mo>‐</mo><mn>1</mn></mrow></msup></mrow></math></span> and a low apparent activation energy of 25.3 <span><math><mrow><mtext>kJ</mtext><mspace></mspace><msup><mtext>mol</mtext><mrow><mo>‐</mo><mn>1</mn></mrow></msup></mrow></math></span> was obtained when <em>x</em> = 30. Density functional theory simulations indicate that the presence of Ni, synergizing with Fe and Co, promotes electron transfer to Ru and enhances the adsorption energies of both AB and H<sub>2</sub>O molecules while reducing the activation barrier for cleaving the H<sub>2</sub>O molecule, leading to enhanced intrinsic catalytic activity of the alloy. The exceptional catalytic performance of the np-RuNiFeCo arises from the synergy of multiple principal elements, nanoporous morphology, and amorphous/nanocrystalline heterogeneous interface. In addition, the mechanisms of dealloying and nanoporous structure formation have been discussed based on surface diffusion.</p></div>","PeriodicalId":48517,"journal":{"name":"Materials Today Nano","volume":"26 ","pages":"Article 100485"},"PeriodicalIF":8.2000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel nanoporous amorphous/nanocrystalline composite structured RuNiFeCo multicomponent alloys with exceptional catalytic activity for ammonia borane hydrolytic dehydrogenation\",\"authors\":\"Shiyao Jin,&nbsp;Yanhui Li,&nbsp;Yaping Yang,&nbsp;Wei Zhang\",\"doi\":\"10.1016/j.mtnano.2024.100485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The pursuit of high-efficient and cost-effective catalysts for hydrogen generation is imperative to address the energy crisis. Herein, nanoporous RuNiFeCo alloys (np-RuNiFeCo) with high catalytic activity for ammonia borane (AB) hydrolytic dehydrogenation have been prepared by dealloying Fe<sub>25</sub>Ni<sub><em>x</em></sub>Co<sub>40-<em>x</em></sub>Ru<sub>5</sub>B<sub>30</sub> (<em>x</em> = 0–40) high-entropy amorphous alloys with low Ru content. The np-RuNiFeCo are composed of an amorphous/hexagonal close-packed Ru nanocrystalline dual-phase structure and exhibit a uniform nanopore/ligament bicontinuous architecture. The morphology, composition, and AB hydrolysis catalytic properties of the np-RuNiFeCo can be regulated by varying the Ni/Co content in the precursors, and the best catalytic activity with a high turnover frequency value of 148.2 <span><math><mrow><msub><mtext>mol</mtext><mrow><mi>H</mi><mn>2</mn></mrow></msub><mspace></mspace><msubsup><mtext>mol</mtext><mtext>Ru</mtext><mrow><mo>‐</mo><mn>1</mn></mrow></msubsup><mspace></mspace><msup><mi>min</mi><mrow><mo>‐</mo><mn>1</mn></mrow></msup></mrow></math></span> and a low apparent activation energy of 25.3 <span><math><mrow><mtext>kJ</mtext><mspace></mspace><msup><mtext>mol</mtext><mrow><mo>‐</mo><mn>1</mn></mrow></msup></mrow></math></span> was obtained when <em>x</em> = 30. Density functional theory simulations indicate that the presence of Ni, synergizing with Fe and Co, promotes electron transfer to Ru and enhances the adsorption energies of both AB and H<sub>2</sub>O molecules while reducing the activation barrier for cleaving the H<sub>2</sub>O molecule, leading to enhanced intrinsic catalytic activity of the alloy. The exceptional catalytic performance of the np-RuNiFeCo arises from the synergy of multiple principal elements, nanoporous morphology, and amorphous/nanocrystalline heterogeneous interface. In addition, the mechanisms of dealloying and nanoporous structure formation have been discussed based on surface diffusion.</p></div>\",\"PeriodicalId\":48517,\"journal\":{\"name\":\"Materials Today Nano\",\"volume\":\"26 \",\"pages\":\"Article 100485\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S258884202400035X\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Nano","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S258884202400035X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

要解决能源危机,就必须寻求高效、经济的制氢催化剂。在此,通过将低 Ru 含量的 Fe25NixCo40-xRu5B30 (x = 0-40)高熵无定形合金进行脱合金化,制备了对氨硼烷(AB)水解脱氢具有高催化活性的纳米多孔 RuNiFeCo 合金(np-RuNiFeCo)。np-RuNiFeCo 由非晶/六方紧密堆积的 Ru 纳米晶双相结构组成,并呈现出均匀的纳米孔/配线双连续结构。np-RuNiFeCo 的形态、组成和 AB 水解催化特性可通过改变前驱体中 Ni/Co 的含量来调节,当 x = 30 时,np-RuNiFeCo 的催化活性最好,翻转频率值高达 148.2 molH2molRu-1min-1,表观活化能低至 25.3 kJmol-1。密度泛函理论模拟表明,镍与铁和钴的协同作用促进了电子向 Ru 的转移,提高了 AB 分子和 H2O 分子的吸附能,同时降低了裂解 H2O 分子的活化势垒,从而提高了合金的内在催化活性。np-RuNiFeCo 的优异催化性能源于多种主要元素、纳米多孔形态和非晶/纳米晶异质界面的协同作用。此外,还讨论了基于表面扩散的脱合金和纳米多孔结构形成机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Novel nanoporous amorphous/nanocrystalline composite structured RuNiFeCo multicomponent alloys with exceptional catalytic activity for ammonia borane hydrolytic dehydrogenation

Novel nanoporous amorphous/nanocrystalline composite structured RuNiFeCo multicomponent alloys with exceptional catalytic activity for ammonia borane hydrolytic dehydrogenation

The pursuit of high-efficient and cost-effective catalysts for hydrogen generation is imperative to address the energy crisis. Herein, nanoporous RuNiFeCo alloys (np-RuNiFeCo) with high catalytic activity for ammonia borane (AB) hydrolytic dehydrogenation have been prepared by dealloying Fe25NixCo40-xRu5B30 (x = 0–40) high-entropy amorphous alloys with low Ru content. The np-RuNiFeCo are composed of an amorphous/hexagonal close-packed Ru nanocrystalline dual-phase structure and exhibit a uniform nanopore/ligament bicontinuous architecture. The morphology, composition, and AB hydrolysis catalytic properties of the np-RuNiFeCo can be regulated by varying the Ni/Co content in the precursors, and the best catalytic activity with a high turnover frequency value of 148.2 molH2molRu1min1 and a low apparent activation energy of 25.3 kJmol1 was obtained when x = 30. Density functional theory simulations indicate that the presence of Ni, synergizing with Fe and Co, promotes electron transfer to Ru and enhances the adsorption energies of both AB and H2O molecules while reducing the activation barrier for cleaving the H2O molecule, leading to enhanced intrinsic catalytic activity of the alloy. The exceptional catalytic performance of the np-RuNiFeCo arises from the synergy of multiple principal elements, nanoporous morphology, and amorphous/nanocrystalline heterogeneous interface. In addition, the mechanisms of dealloying and nanoporous structure formation have been discussed based on surface diffusion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.30
自引率
3.90%
发文量
130
审稿时长
31 days
期刊介绍: Materials Today Nano is a multidisciplinary journal dedicated to nanoscience and nanotechnology. The journal aims to showcase the latest advances in nanoscience and provide a platform for discussing new concepts and applications. With rigorous peer review, rapid decisions, and high visibility, Materials Today Nano offers authors the opportunity to publish comprehensive articles, short communications, and reviews on a wide range of topics in nanoscience. The editors welcome comprehensive articles, short communications and reviews on topics including but not limited to: Nanoscale synthesis and assembly Nanoscale characterization Nanoscale fabrication Nanoelectronics and molecular electronics Nanomedicine Nanomechanics Nanosensors Nanophotonics Nanocomposites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信