{"title":"过表达 MiR-188-5p 可下调 IL6ST/STAT3/NLRP3 通路,改善氧-葡萄糖剥夺/再氧合时的神经元损伤","authors":"Yujie Hu, Ganlan Wang, Guoshuai Yang","doi":"10.2174/0115672026313555240515103132","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>CI/R, characterized by ischemic injury following abrupt reestablishment of blood flow, can cause oxidative stress, mitochondrial dysfunction, and apoptosis. We used oxygen-glucose deprivation/reoxygenation (OGD/R) induced injury in HT22 and primary mouse cortical neurons (MCN) as a model for CI/R.</p><p><strong>Objective: </strong>This study investigates the role of miR-188-5p in hippocampal neuron cell injury associated with Cerebral Ischemia-Reperfusion (CI/R).</p><p><strong>Methods: </strong>HT22 and MCN cells were induced by OGD/R to construct an <i>in vitro</i> model of CI/R. Cell apoptosis and proliferation were assessed using flow cytometry and the Cell Counting Kit-8 (CCK8). ELISA was conducted to measure the levels of IL-1β, IL-6, and TNF-α. Moreover, the interaction between miR-188-5p and IL6ST was investigated using dual luciferase assay, the expression of miR-188-5p, Bax, cleaved-caspase3, IL-6, Bcl-2, IL-1β, TNF-α, IL6ST, NFκB, NLRP3 and STAT3 was evaluated using RT-qPCR or Western blot, and immunofluorescence was used to analyze the co-expression of p-STAT3 and NLRP3 in neuronal cells.</p><p><strong>Results: </strong>OGD/R reduced proliferation and miR-188-5p levels and increased IL6ST expression, inflammation, and apoptosis in HT22 and MCN cells. Moreover, miR-188-5p was found to bind to IL6ST. Mimics of miR-188-5p reduced apoptosis, lowered the expression of cleaved-caspase3 and Bax proteins, and elevated Bcl-2 protein expression in cells treated with OGD/R. Overexpression of miR-188-5p decreased the levels of NLRP3 and p-STAT3 in the OGD/R group. Furthermore, the overexpression of miR-188-5p reduced IL6ST, p- NFκB/NFκB, p-STAT3/STAT3, and NLRP3 proteins in OGD/R, and these effects could be reversed by IL6ST overexpression.</p><p><strong>Conclusion: </strong>Mimics of miR-188-5p were found to inhibit inflammation and the STAT3/NLRP3 pathway via IL6ST, thereby ameliorating injury in HT22 and MCN cells treated with OGD/R in the context of CI/R.</p>","PeriodicalId":93965,"journal":{"name":"Current neurovascular research","volume":" ","pages":"263-273"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Overexpression of MiR-188-5p Downregulates IL6ST/STAT3/ NLRP3 Pathway to Ameliorate Neuron Injury in Oxygen-glucose Deprivation/Reoxygenation.\",\"authors\":\"Yujie Hu, Ganlan Wang, Guoshuai Yang\",\"doi\":\"10.2174/0115672026313555240515103132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>CI/R, characterized by ischemic injury following abrupt reestablishment of blood flow, can cause oxidative stress, mitochondrial dysfunction, and apoptosis. We used oxygen-glucose deprivation/reoxygenation (OGD/R) induced injury in HT22 and primary mouse cortical neurons (MCN) as a model for CI/R.</p><p><strong>Objective: </strong>This study investigates the role of miR-188-5p in hippocampal neuron cell injury associated with Cerebral Ischemia-Reperfusion (CI/R).</p><p><strong>Methods: </strong>HT22 and MCN cells were induced by OGD/R to construct an <i>in vitro</i> model of CI/R. Cell apoptosis and proliferation were assessed using flow cytometry and the Cell Counting Kit-8 (CCK8). ELISA was conducted to measure the levels of IL-1β, IL-6, and TNF-α. Moreover, the interaction between miR-188-5p and IL6ST was investigated using dual luciferase assay, the expression of miR-188-5p, Bax, cleaved-caspase3, IL-6, Bcl-2, IL-1β, TNF-α, IL6ST, NFκB, NLRP3 and STAT3 was evaluated using RT-qPCR or Western blot, and immunofluorescence was used to analyze the co-expression of p-STAT3 and NLRP3 in neuronal cells.</p><p><strong>Results: </strong>OGD/R reduced proliferation and miR-188-5p levels and increased IL6ST expression, inflammation, and apoptosis in HT22 and MCN cells. Moreover, miR-188-5p was found to bind to IL6ST. Mimics of miR-188-5p reduced apoptosis, lowered the expression of cleaved-caspase3 and Bax proteins, and elevated Bcl-2 protein expression in cells treated with OGD/R. Overexpression of miR-188-5p decreased the levels of NLRP3 and p-STAT3 in the OGD/R group. Furthermore, the overexpression of miR-188-5p reduced IL6ST, p- NFκB/NFκB, p-STAT3/STAT3, and NLRP3 proteins in OGD/R, and these effects could be reversed by IL6ST overexpression.</p><p><strong>Conclusion: </strong>Mimics of miR-188-5p were found to inhibit inflammation and the STAT3/NLRP3 pathway via IL6ST, thereby ameliorating injury in HT22 and MCN cells treated with OGD/R in the context of CI/R.</p>\",\"PeriodicalId\":93965,\"journal\":{\"name\":\"Current neurovascular research\",\"volume\":\" \",\"pages\":\"263-273\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current neurovascular research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/0115672026313555240515103132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current neurovascular research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0115672026313555240515103132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Overexpression of MiR-188-5p Downregulates IL6ST/STAT3/ NLRP3 Pathway to Ameliorate Neuron Injury in Oxygen-glucose Deprivation/Reoxygenation.
Background: CI/R, characterized by ischemic injury following abrupt reestablishment of blood flow, can cause oxidative stress, mitochondrial dysfunction, and apoptosis. We used oxygen-glucose deprivation/reoxygenation (OGD/R) induced injury in HT22 and primary mouse cortical neurons (MCN) as a model for CI/R.
Objective: This study investigates the role of miR-188-5p in hippocampal neuron cell injury associated with Cerebral Ischemia-Reperfusion (CI/R).
Methods: HT22 and MCN cells were induced by OGD/R to construct an in vitro model of CI/R. Cell apoptosis and proliferation were assessed using flow cytometry and the Cell Counting Kit-8 (CCK8). ELISA was conducted to measure the levels of IL-1β, IL-6, and TNF-α. Moreover, the interaction between miR-188-5p and IL6ST was investigated using dual luciferase assay, the expression of miR-188-5p, Bax, cleaved-caspase3, IL-6, Bcl-2, IL-1β, TNF-α, IL6ST, NFκB, NLRP3 and STAT3 was evaluated using RT-qPCR or Western blot, and immunofluorescence was used to analyze the co-expression of p-STAT3 and NLRP3 in neuronal cells.
Results: OGD/R reduced proliferation and miR-188-5p levels and increased IL6ST expression, inflammation, and apoptosis in HT22 and MCN cells. Moreover, miR-188-5p was found to bind to IL6ST. Mimics of miR-188-5p reduced apoptosis, lowered the expression of cleaved-caspase3 and Bax proteins, and elevated Bcl-2 protein expression in cells treated with OGD/R. Overexpression of miR-188-5p decreased the levels of NLRP3 and p-STAT3 in the OGD/R group. Furthermore, the overexpression of miR-188-5p reduced IL6ST, p- NFκB/NFκB, p-STAT3/STAT3, and NLRP3 proteins in OGD/R, and these effects could be reversed by IL6ST overexpression.
Conclusion: Mimics of miR-188-5p were found to inhibit inflammation and the STAT3/NLRP3 pathway via IL6ST, thereby ameliorating injury in HT22 and MCN cells treated with OGD/R in the context of CI/R.