Brennan C Kahan, Bryan S Blette, Michael O Harhay, Scott D Halpern, Vipul Jairath, Andrew Copas, Fan Li
{"title":"解密分组随机试验中的估计值。","authors":"Brennan C Kahan, Bryan S Blette, Michael O Harhay, Scott D Halpern, Vipul Jairath, Andrew Copas, Fan Li","doi":"10.1177/09622802241254197","DOIUrl":null,"url":null,"abstract":"<p><p>Estimands can help clarify the interpretation of treatment effects and ensure that estimators are aligned with the study's objectives. Cluster-randomised trials require additional attributes to be defined within the estimand compared to individually randomised trials, including whether treatment effects are <i>marginal</i> or <i>cluster-specific</i>, and whether they are <i>participant-</i> or <i>cluster-average</i>. In this paper, we provide formal definitions of estimands encompassing both these attributes using potential outcomes notation and describe differences between them. We then provide an overview of estimators for each estimand, describe their assumptions, and show consistency (i.e. asymptotically unbiased estimation) for a series of analyses based on cluster-level summaries. Then, through a re-analysis of a published cluster-randomised trial, we demonstrate that the choice of both estimand and estimator can affect interpretation. For instance, the estimated odds ratio ranged from 1.38 (<i>p</i> = 0.17) to 1.83 (<i>p</i> = 0.03) depending on the target estimand, and for some estimands, the choice of estimator affected the conclusions by leading to smaller treatment effect estimates. We conclude that careful specification of the estimand, along with an appropriate choice of estimator, is essential to ensuring that cluster-randomised trials address the right question.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"1211-1232"},"PeriodicalIF":1.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11348634/pdf/","citationCount":"0","resultStr":"{\"title\":\"Demystifying estimands in cluster-randomised trials.\",\"authors\":\"Brennan C Kahan, Bryan S Blette, Michael O Harhay, Scott D Halpern, Vipul Jairath, Andrew Copas, Fan Li\",\"doi\":\"10.1177/09622802241254197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Estimands can help clarify the interpretation of treatment effects and ensure that estimators are aligned with the study's objectives. Cluster-randomised trials require additional attributes to be defined within the estimand compared to individually randomised trials, including whether treatment effects are <i>marginal</i> or <i>cluster-specific</i>, and whether they are <i>participant-</i> or <i>cluster-average</i>. In this paper, we provide formal definitions of estimands encompassing both these attributes using potential outcomes notation and describe differences between them. We then provide an overview of estimators for each estimand, describe their assumptions, and show consistency (i.e. asymptotically unbiased estimation) for a series of analyses based on cluster-level summaries. Then, through a re-analysis of a published cluster-randomised trial, we demonstrate that the choice of both estimand and estimator can affect interpretation. For instance, the estimated odds ratio ranged from 1.38 (<i>p</i> = 0.17) to 1.83 (<i>p</i> = 0.03) depending on the target estimand, and for some estimands, the choice of estimator affected the conclusions by leading to smaller treatment effect estimates. We conclude that careful specification of the estimand, along with an appropriate choice of estimator, is essential to ensuring that cluster-randomised trials address the right question.</p>\",\"PeriodicalId\":22038,\"journal\":{\"name\":\"Statistical Methods in Medical Research\",\"volume\":\" \",\"pages\":\"1211-1232\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11348634/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Methods in Medical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/09622802241254197\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methods in Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09622802241254197","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/23 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Demystifying estimands in cluster-randomised trials.
Estimands can help clarify the interpretation of treatment effects and ensure that estimators are aligned with the study's objectives. Cluster-randomised trials require additional attributes to be defined within the estimand compared to individually randomised trials, including whether treatment effects are marginal or cluster-specific, and whether they are participant- or cluster-average. In this paper, we provide formal definitions of estimands encompassing both these attributes using potential outcomes notation and describe differences between them. We then provide an overview of estimators for each estimand, describe their assumptions, and show consistency (i.e. asymptotically unbiased estimation) for a series of analyses based on cluster-level summaries. Then, through a re-analysis of a published cluster-randomised trial, we demonstrate that the choice of both estimand and estimator can affect interpretation. For instance, the estimated odds ratio ranged from 1.38 (p = 0.17) to 1.83 (p = 0.03) depending on the target estimand, and for some estimands, the choice of estimator affected the conclusions by leading to smaller treatment effect estimates. We conclude that careful specification of the estimand, along with an appropriate choice of estimator, is essential to ensuring that cluster-randomised trials address the right question.
期刊介绍:
Statistical Methods in Medical Research is a peer reviewed scholarly journal and is the leading vehicle for articles in all the main areas of medical statistics and an essential reference for all medical statisticians. This unique journal is devoted solely to statistics and medicine and aims to keep professionals abreast of the many powerful statistical techniques now available to the medical profession. This journal is a member of the Committee on Publication Ethics (COPE)