HIF2A 在肺癌脑转移过程中介导癌症相关成纤维细胞向侵袭性表型的品系转变。

IF 6.5 2区 医学 Q1 IMMUNOLOGY
Oncoimmunology Pub Date : 2024-05-20 eCollection Date: 2024-01-01 DOI:10.1080/2162402X.2024.2356942
Muyuan You, Minjie Fu, Zhewei Shen, Yuan Feng, Licheng Zhang, Xianmin Zhu, Zhengping Zhuang, Ying Mao, Wei Hua
{"title":"HIF2A 在肺癌脑转移过程中介导癌症相关成纤维细胞向侵袭性表型的品系转变。","authors":"Muyuan You, Minjie Fu, Zhewei Shen, Yuan Feng, Licheng Zhang, Xianmin Zhu, Zhengping Zhuang, Ying Mao, Wei Hua","doi":"10.1080/2162402X.2024.2356942","DOIUrl":null,"url":null,"abstract":"<p><p>Brain metastasis is the most devasting form of lung cancer. Recent studies highlight significant differences in the tumor microenvironment (TME) between lung cancer brain metastasis (LCBM) and primary lung cancer, which contribute significantly to tumor progression and drug resistance. Cancer-associated fibroblasts (CAFs) are the major component of pro-tumor TME with high plasticity. However, the lineage composition and function of CAFs in LCBM remain elusive. By reanalyzing single-cell RNA sequencing (scRNA-seq) data (GSE131907) from lung cancer patients with different stages of metastasis comprising primary lesions and brain metastasis, we found that CAFs undergo distinctive lineage transition during LCBM under a hypoxic situation, which is directly driven by hypoxia-induced HIF-2α activation. Transited CAFs enhance angiogenesis through VEGF pathways, trigger metabolic reprogramming, and promote the growth of tumor cells. Bulk RNA sequencing data was utilized as validation cohorts. Multiplex immunohistochemistry (mIHC) assay was performed on four paired samples of brain metastasis and their primary lung cancer counterparts to validate the findings. Our study revealed a novel mechanism of lung cancer brain metastasis featuring HIF-2α-induced lineage transition and functional alteration of CAFs, which offers potential therapeutic targets.</p>","PeriodicalId":48714,"journal":{"name":"Oncoimmunology","volume":null,"pages":null},"PeriodicalIF":6.5000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11110709/pdf/","citationCount":"0","resultStr":"{\"title\":\"HIF2A mediates lineage transition to aggressive phenotype of cancer-associated fibroblasts in lung cancer brain metastasis.\",\"authors\":\"Muyuan You, Minjie Fu, Zhewei Shen, Yuan Feng, Licheng Zhang, Xianmin Zhu, Zhengping Zhuang, Ying Mao, Wei Hua\",\"doi\":\"10.1080/2162402X.2024.2356942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Brain metastasis is the most devasting form of lung cancer. Recent studies highlight significant differences in the tumor microenvironment (TME) between lung cancer brain metastasis (LCBM) and primary lung cancer, which contribute significantly to tumor progression and drug resistance. Cancer-associated fibroblasts (CAFs) are the major component of pro-tumor TME with high plasticity. However, the lineage composition and function of CAFs in LCBM remain elusive. By reanalyzing single-cell RNA sequencing (scRNA-seq) data (GSE131907) from lung cancer patients with different stages of metastasis comprising primary lesions and brain metastasis, we found that CAFs undergo distinctive lineage transition during LCBM under a hypoxic situation, which is directly driven by hypoxia-induced HIF-2α activation. Transited CAFs enhance angiogenesis through VEGF pathways, trigger metabolic reprogramming, and promote the growth of tumor cells. Bulk RNA sequencing data was utilized as validation cohorts. Multiplex immunohistochemistry (mIHC) assay was performed on four paired samples of brain metastasis and their primary lung cancer counterparts to validate the findings. Our study revealed a novel mechanism of lung cancer brain metastasis featuring HIF-2α-induced lineage transition and functional alteration of CAFs, which offers potential therapeutic targets.</p>\",\"PeriodicalId\":48714,\"journal\":{\"name\":\"Oncoimmunology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11110709/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oncoimmunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/2162402X.2024.2356942\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncoimmunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/2162402X.2024.2356942","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

脑转移是肺癌中最致命的一种。最近的研究突显了肺癌脑转移瘤(LCBM)与原发性肺癌之间在肿瘤微环境(TME)上的显著差异,这在很大程度上导致了肿瘤的进展和耐药性。癌症相关成纤维细胞(CAFs)是促肿瘤微环境的主要组成部分,具有高度可塑性。然而,CAFs在LCBM中的品系组成和功能仍然难以捉摸。通过重新分析不同转移阶段肺癌患者(包括原发病灶和脑转移灶)的单细胞RNA测序(scRNA-seq)数据(GSE131907),我们发现CAFs在缺氧情况下的LCBM过程中会发生独特的品系转变,而这种转变是由缺氧诱导的HIF-2α激活直接驱动的。转移的CAFs通过血管内皮生长因子途径增强血管生成,引发代谢重编程,促进肿瘤细胞生长。大量 RNA 测序数据被用作验证队列。为了验证研究结果,我们对四个脑转移瘤和原发性肺癌的配对样本进行了多重免疫组化(mIHC)检测。我们的研究揭示了肺癌脑转移的新机制,即HIF-2α诱导的细胞系转变和CAFs的功能改变,这为我们提供了潜在的治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HIF2A mediates lineage transition to aggressive phenotype of cancer-associated fibroblasts in lung cancer brain metastasis.

Brain metastasis is the most devasting form of lung cancer. Recent studies highlight significant differences in the tumor microenvironment (TME) between lung cancer brain metastasis (LCBM) and primary lung cancer, which contribute significantly to tumor progression and drug resistance. Cancer-associated fibroblasts (CAFs) are the major component of pro-tumor TME with high plasticity. However, the lineage composition and function of CAFs in LCBM remain elusive. By reanalyzing single-cell RNA sequencing (scRNA-seq) data (GSE131907) from lung cancer patients with different stages of metastasis comprising primary lesions and brain metastasis, we found that CAFs undergo distinctive lineage transition during LCBM under a hypoxic situation, which is directly driven by hypoxia-induced HIF-2α activation. Transited CAFs enhance angiogenesis through VEGF pathways, trigger metabolic reprogramming, and promote the growth of tumor cells. Bulk RNA sequencing data was utilized as validation cohorts. Multiplex immunohistochemistry (mIHC) assay was performed on four paired samples of brain metastasis and their primary lung cancer counterparts to validate the findings. Our study revealed a novel mechanism of lung cancer brain metastasis featuring HIF-2α-induced lineage transition and functional alteration of CAFs, which offers potential therapeutic targets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Oncoimmunology
Oncoimmunology ONCOLOGYIMMUNOLOGY-IMMUNOLOGY
CiteScore
12.50
自引率
2.80%
发文量
276
审稿时长
24 weeks
期刊介绍: OncoImmunology is a dynamic, high-profile, open access journal that comprehensively covers tumor immunology and immunotherapy. As cancer immunotherapy advances, OncoImmunology is committed to publishing top-tier research encompassing all facets of basic and applied tumor immunology. The journal covers a wide range of topics, including: -Basic and translational studies in immunology of both solid and hematological malignancies -Inflammation, innate and acquired immune responses against cancer -Mechanisms of cancer immunoediting and immune evasion -Modern immunotherapies, including immunomodulators, immune checkpoint inhibitors, T-cell, NK-cell, and macrophage engagers, and CAR T cells -Immunological effects of conventional anticancer therapies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信