Paula Arbildi , Ana Clara Muniz-Lagos , Eugenia Fernández , Rosina Giorgi , Kai Wiater , Gustavo Mourglia-Ettlin , Verónica Fernández
{"title":"用颗粒棘球蚴的 Mu 级谷胱甘肽转移酶进行免疫可诱导有效的抗体反应,并对继发性囊性棘球蚴病产生长期保护作用。","authors":"Paula Arbildi , Ana Clara Muniz-Lagos , Eugenia Fernández , Rosina Giorgi , Kai Wiater , Gustavo Mourglia-Ettlin , Verónica Fernández","doi":"10.1016/j.micinf.2024.105364","DOIUrl":null,"url":null,"abstract":"<div><p>Cystic echinococcosis, a zoonosis caused by cestodes belonging to the <em>Echinococcus granulosus sensu lato</em> (s.l.) genetic complex, affects humans and diverse livestock species. Although a veterinary vaccine exhibiting high levels of antibody-mediated protection has successfully reached the market, the large genetic diversity among parasite isolates and their particular host preferences, makes still necessary the search for novel vaccine candidates. Glutathione transferases (GSTs) constitute attractive targets for immunoprophylaxis due to their outstanding relevance in helminth detoxification processes, against both exogenous and endogenous stressors. Among the six GSTs known to be expressed in <em>E. granulosus</em> s.l., EgGST1 (Mu-class), EgGST2 (Sigma-class), and EgGST3 (a still non-classifiable isoenzyme), show the highest proteomic expression. Therefore, their recombinant forms -rEgGST1, rEgGST2 and rEgGST3- were herein analyzed regarding their potential to induce long-term antiparasite protection in mice. Only immunization with rEgGST1 induced long-lasting protection; and accordingly, rEgGST1-specific antibodies enhanced the parasite killing through both the classical activation of the host complement system and the antibody-dependent cellular cytotoxicity by macrophages. These results support further testing of rEgGST1 as a vaccine candidate in diverse hosts due to the broad expression of EgGST1 in different parasite stages and tissues.</p></div>","PeriodicalId":18497,"journal":{"name":"Microbes and Infection","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Immunization with a Mu-class glutathione transferase from Echinococcus granulosus induces efficient antibody responses and confers long-term protection against secondary cystic echinococcosis\",\"authors\":\"Paula Arbildi , Ana Clara Muniz-Lagos , Eugenia Fernández , Rosina Giorgi , Kai Wiater , Gustavo Mourglia-Ettlin , Verónica Fernández\",\"doi\":\"10.1016/j.micinf.2024.105364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cystic echinococcosis, a zoonosis caused by cestodes belonging to the <em>Echinococcus granulosus sensu lato</em> (s.l.) genetic complex, affects humans and diverse livestock species. Although a veterinary vaccine exhibiting high levels of antibody-mediated protection has successfully reached the market, the large genetic diversity among parasite isolates and their particular host preferences, makes still necessary the search for novel vaccine candidates. Glutathione transferases (GSTs) constitute attractive targets for immunoprophylaxis due to their outstanding relevance in helminth detoxification processes, against both exogenous and endogenous stressors. Among the six GSTs known to be expressed in <em>E. granulosus</em> s.l., EgGST1 (Mu-class), EgGST2 (Sigma-class), and EgGST3 (a still non-classifiable isoenzyme), show the highest proteomic expression. Therefore, their recombinant forms -rEgGST1, rEgGST2 and rEgGST3- were herein analyzed regarding their potential to induce long-term antiparasite protection in mice. Only immunization with rEgGST1 induced long-lasting protection; and accordingly, rEgGST1-specific antibodies enhanced the parasite killing through both the classical activation of the host complement system and the antibody-dependent cellular cytotoxicity by macrophages. These results support further testing of rEgGST1 as a vaccine candidate in diverse hosts due to the broad expression of EgGST1 in different parasite stages and tissues.</p></div>\",\"PeriodicalId\":18497,\"journal\":{\"name\":\"Microbes and Infection\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbes and Infection\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S128645792400100X\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbes and Infection","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S128645792400100X","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Immunization with a Mu-class glutathione transferase from Echinococcus granulosus induces efficient antibody responses and confers long-term protection against secondary cystic echinococcosis
Cystic echinococcosis, a zoonosis caused by cestodes belonging to the Echinococcus granulosus sensu lato (s.l.) genetic complex, affects humans and diverse livestock species. Although a veterinary vaccine exhibiting high levels of antibody-mediated protection has successfully reached the market, the large genetic diversity among parasite isolates and their particular host preferences, makes still necessary the search for novel vaccine candidates. Glutathione transferases (GSTs) constitute attractive targets for immunoprophylaxis due to their outstanding relevance in helminth detoxification processes, against both exogenous and endogenous stressors. Among the six GSTs known to be expressed in E. granulosus s.l., EgGST1 (Mu-class), EgGST2 (Sigma-class), and EgGST3 (a still non-classifiable isoenzyme), show the highest proteomic expression. Therefore, their recombinant forms -rEgGST1, rEgGST2 and rEgGST3- were herein analyzed regarding their potential to induce long-term antiparasite protection in mice. Only immunization with rEgGST1 induced long-lasting protection; and accordingly, rEgGST1-specific antibodies enhanced the parasite killing through both the classical activation of the host complement system and the antibody-dependent cellular cytotoxicity by macrophages. These results support further testing of rEgGST1 as a vaccine candidate in diverse hosts due to the broad expression of EgGST1 in different parasite stages and tissues.
期刊介绍:
Microbes and Infection publishes 10 peer-reviewed issues per year in all fields of infection and immunity, covering the different levels of host-microbe interactions, and in particular:
the molecular biology and cell biology of the crosstalk between hosts (human and model organisms) and microbes (viruses, bacteria, parasites and fungi), including molecular virulence and evasion mechanisms.
the immune response to infection, including pathogenesis and host susceptibility.
emerging human infectious diseases.
systems immunology.
molecular epidemiology/genetics of host pathogen interactions.
microbiota and host "interactions".
vaccine development, including novel strategies and adjuvants.
Clinical studies, accounts of clinical trials and biomarker studies in infectious diseases are within the scope of the journal.
Microbes and Infection publishes articles on human pathogens or pathogens of model systems. However, articles on other microbes can be published if they contribute to our understanding of basic mechanisms of host-pathogen interactions. Purely descriptive and preliminary studies are discouraged.