{"title":"椎体和股骨头内μCT分析中人体骨小梁的最佳取样量。","authors":"Xin-Xin Wen, Chun-Lin Zong, Chao Xu, Xiang-Yu Ma, Fa-Qi Wang, Ya-Fei Feng, Ya-Bo Yan, Wei Lei","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Trabecular bones of different skeletal sites have different bone morphologies. How to select an appropriate volume of region of interest (ROI) to reflect the microarchitecture of trabecular bone in different skeletal sites was an interesting problem. Therefore, in this study, the optimal volumes of ROI within vertebral body and femoral head, and if the relationships between volumes of ROI and microarchitectural parameters were affected by trabecular bone morphology were studied. Within vertebral body and femoral head, different cubic volumes of ROI (from (1 mm)(3) to (20 mm)(3)) were set to compare with control groups(whole volume of trabecular bone). Five microarchitectural parameters (BV/TV, Tb.N, Tb.Th, Tb.Sp, and BS/BV) were obtained. Nonlinear curve fitting functions were used to explore the relationships between the microarchitectural parameters and the volumes of ROI. The volumes of ROI could affect the microarchitectural parameters when the volume was smaller than (8 mm)(3) within the vertebral body and smaller than (13 mm)(3) within the femoral head. As the volume increased, the variable tendencies of BV/TV, Tb.N, and Tb.Sp were different between these two skeletal sites. The curve fitting functions between these two sites were also different. The relationships between volumes of ROI and microarchitectural parameters were affected by the different trabecular bone morphologies within lumbar vertebral body and femoral head. When depicting the microarchitecture of human trabecular bone within lumbar vertebral body and femoral head, the volume of ROI would be larger than (8 mm)(3) and (13 mm)(3). </p>","PeriodicalId":13892,"journal":{"name":"International journal of clinical and experimental medicine","volume":"8 10","pages":"17868-79"},"PeriodicalIF":0.2000,"publicationDate":"2015-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4694281/pdf/","citationCount":"0","resultStr":"{\"title\":\"Optimal sample volumes of human trabecular bone in μCT analysis within vertebral body and femoral head.\",\"authors\":\"Xin-Xin Wen, Chun-Lin Zong, Chao Xu, Xiang-Yu Ma, Fa-Qi Wang, Ya-Fei Feng, Ya-Bo Yan, Wei Lei\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Trabecular bones of different skeletal sites have different bone morphologies. How to select an appropriate volume of region of interest (ROI) to reflect the microarchitecture of trabecular bone in different skeletal sites was an interesting problem. Therefore, in this study, the optimal volumes of ROI within vertebral body and femoral head, and if the relationships between volumes of ROI and microarchitectural parameters were affected by trabecular bone morphology were studied. Within vertebral body and femoral head, different cubic volumes of ROI (from (1 mm)(3) to (20 mm)(3)) were set to compare with control groups(whole volume of trabecular bone). Five microarchitectural parameters (BV/TV, Tb.N, Tb.Th, Tb.Sp, and BS/BV) were obtained. Nonlinear curve fitting functions were used to explore the relationships between the microarchitectural parameters and the volumes of ROI. The volumes of ROI could affect the microarchitectural parameters when the volume was smaller than (8 mm)(3) within the vertebral body and smaller than (13 mm)(3) within the femoral head. As the volume increased, the variable tendencies of BV/TV, Tb.N, and Tb.Sp were different between these two skeletal sites. The curve fitting functions between these two sites were also different. The relationships between volumes of ROI and microarchitectural parameters were affected by the different trabecular bone morphologies within lumbar vertebral body and femoral head. When depicting the microarchitecture of human trabecular bone within lumbar vertebral body and femoral head, the volume of ROI would be larger than (8 mm)(3) and (13 mm)(3). </p>\",\"PeriodicalId\":13892,\"journal\":{\"name\":\"International journal of clinical and experimental medicine\",\"volume\":\"8 10\",\"pages\":\"17868-79\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2015-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4694281/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of clinical and experimental medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2015/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of clinical and experimental medicine","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Optimal sample volumes of human trabecular bone in μCT analysis within vertebral body and femoral head.
Trabecular bones of different skeletal sites have different bone morphologies. How to select an appropriate volume of region of interest (ROI) to reflect the microarchitecture of trabecular bone in different skeletal sites was an interesting problem. Therefore, in this study, the optimal volumes of ROI within vertebral body and femoral head, and if the relationships between volumes of ROI and microarchitectural parameters were affected by trabecular bone morphology were studied. Within vertebral body and femoral head, different cubic volumes of ROI (from (1 mm)(3) to (20 mm)(3)) were set to compare with control groups(whole volume of trabecular bone). Five microarchitectural parameters (BV/TV, Tb.N, Tb.Th, Tb.Sp, and BS/BV) were obtained. Nonlinear curve fitting functions were used to explore the relationships between the microarchitectural parameters and the volumes of ROI. The volumes of ROI could affect the microarchitectural parameters when the volume was smaller than (8 mm)(3) within the vertebral body and smaller than (13 mm)(3) within the femoral head. As the volume increased, the variable tendencies of BV/TV, Tb.N, and Tb.Sp were different between these two skeletal sites. The curve fitting functions between these two sites were also different. The relationships between volumes of ROI and microarchitectural parameters were affected by the different trabecular bone morphologies within lumbar vertebral body and femoral head. When depicting the microarchitecture of human trabecular bone within lumbar vertebral body and femoral head, the volume of ROI would be larger than (8 mm)(3) and (13 mm)(3).