CAD/CAM 夹板材料中的双酚 A 释放量。

IF 1.8 4区 医学 Q2 DENTISTRY, ORAL SURGERY & MEDICINE
Tristan Hampe, Julia Liersch, Bernhard Wiechens, Ralf Bürgers, Sebastian Krohn
{"title":"CAD/CAM 夹板材料中的双酚 A 释放量。","authors":"Tristan Hampe,&nbsp;Julia Liersch,&nbsp;Bernhard Wiechens,&nbsp;Ralf Bürgers,&nbsp;Sebastian Krohn","doi":"10.1111/eos.12993","DOIUrl":null,"url":null,"abstract":"<p>This study aimed to investigate the bisphenol A (BPA) release from four CAD/CAM splint materials: three polycarbonate-based (DD BioSplint C, Splint Plus Biostar, Temp Premium Flexible) and one polymethylmethacrylate-based (Temp Basic) material. From each material, ten cylindrical samples (<i>n</i> = 40) were immersed in high-performance liquid chromatography (HPLC) grade water following ISO 10993-12 and incubated for 24 h in an incubation shaker at 37°C and 112 rpm. Following BPA derivatization, analysis was performed by high-performance liquid chromatography–tandem mass spectrometry (HPLC-MS/MS). After 24 h of incubation, all investigated materials released significant amounts of BPA compared to water blanks. The material-dependent elution increased in the following order: DD BioSplint C &lt; Splint Plus Biostar &lt; Temp Basic &lt; Temp Premium Flexible. Subtracting extraneous BPA, the concentrations ranged between 2.27 ng/mL and 12.65 ng/mL. After extrapolating the concentrations in relation to the average surface area of occlusal splints, the amount of BPA per mL exceeded the Tolerable Daily Intake (TDI) set by the European Union for a person weighing 70 kg by 1.32–6.16 times. Contrary to the release from previously investigated materials, BPA elution from CAD/CAM splint materials was highly elevated. Considering the increasing adaptation of CAD/CAM techniques, elution from them may represent a relevant BPA source in daily dental practice.</p>","PeriodicalId":11983,"journal":{"name":"European Journal of Oral Sciences","volume":"132 4","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/eos.12993","citationCount":"0","resultStr":"{\"title\":\"Bisphenol A release from CAD/CAM splint materials\",\"authors\":\"Tristan Hampe,&nbsp;Julia Liersch,&nbsp;Bernhard Wiechens,&nbsp;Ralf Bürgers,&nbsp;Sebastian Krohn\",\"doi\":\"10.1111/eos.12993\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study aimed to investigate the bisphenol A (BPA) release from four CAD/CAM splint materials: three polycarbonate-based (DD BioSplint C, Splint Plus Biostar, Temp Premium Flexible) and one polymethylmethacrylate-based (Temp Basic) material. From each material, ten cylindrical samples (<i>n</i> = 40) were immersed in high-performance liquid chromatography (HPLC) grade water following ISO 10993-12 and incubated for 24 h in an incubation shaker at 37°C and 112 rpm. Following BPA derivatization, analysis was performed by high-performance liquid chromatography–tandem mass spectrometry (HPLC-MS/MS). After 24 h of incubation, all investigated materials released significant amounts of BPA compared to water blanks. The material-dependent elution increased in the following order: DD BioSplint C &lt; Splint Plus Biostar &lt; Temp Basic &lt; Temp Premium Flexible. Subtracting extraneous BPA, the concentrations ranged between 2.27 ng/mL and 12.65 ng/mL. After extrapolating the concentrations in relation to the average surface area of occlusal splints, the amount of BPA per mL exceeded the Tolerable Daily Intake (TDI) set by the European Union for a person weighing 70 kg by 1.32–6.16 times. Contrary to the release from previously investigated materials, BPA elution from CAD/CAM splint materials was highly elevated. Considering the increasing adaptation of CAD/CAM techniques, elution from them may represent a relevant BPA source in daily dental practice.</p>\",\"PeriodicalId\":11983,\"journal\":{\"name\":\"European Journal of Oral Sciences\",\"volume\":\"132 4\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/eos.12993\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Oral Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/eos.12993\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Oral Sciences","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/eos.12993","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在调查四种 CAD/CAM 夹板材料的双酚 A(BPA)释放情况:三种聚碳酸酯基材(DD BioSplint C、Splint Plus Biostar、Temp Premium Flexible)和一种聚甲基丙烯酸甲酯基材(Temp Basic)。将每种材料的 10 个圆柱形样品(n = 40)浸入符合 ISO 10993-12 标准的高效液相色谱 (HPLC) 级水中,并在 37°C 和 112 rpm 的培养摇床中培养 24 小时。双酚 A 衍生后,采用高效液相色谱-串联质谱法(HPLC-MS/MS)进行分析。培养 24 小时后,与空白水相比,所有研究材料都释放出大量的双酚 A。与材料有关的洗脱量依次增加:DD BioSplint C
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Bisphenol A release from CAD/CAM splint materials

Bisphenol A release from CAD/CAM splint materials

This study aimed to investigate the bisphenol A (BPA) release from four CAD/CAM splint materials: three polycarbonate-based (DD BioSplint C, Splint Plus Biostar, Temp Premium Flexible) and one polymethylmethacrylate-based (Temp Basic) material. From each material, ten cylindrical samples (n = 40) were immersed in high-performance liquid chromatography (HPLC) grade water following ISO 10993-12 and incubated for 24 h in an incubation shaker at 37°C and 112 rpm. Following BPA derivatization, analysis was performed by high-performance liquid chromatography–tandem mass spectrometry (HPLC-MS/MS). After 24 h of incubation, all investigated materials released significant amounts of BPA compared to water blanks. The material-dependent elution increased in the following order: DD BioSplint C < Splint Plus Biostar < Temp Basic < Temp Premium Flexible. Subtracting extraneous BPA, the concentrations ranged between 2.27 ng/mL and 12.65 ng/mL. After extrapolating the concentrations in relation to the average surface area of occlusal splints, the amount of BPA per mL exceeded the Tolerable Daily Intake (TDI) set by the European Union for a person weighing 70 kg by 1.32–6.16 times. Contrary to the release from previously investigated materials, BPA elution from CAD/CAM splint materials was highly elevated. Considering the increasing adaptation of CAD/CAM techniques, elution from them may represent a relevant BPA source in daily dental practice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Journal of Oral Sciences
European Journal of Oral Sciences 医学-牙科与口腔外科
CiteScore
3.50
自引率
5.30%
发文量
61
审稿时长
2 months
期刊介绍: The European Journal of Oral Sciences is an international journal which publishes original research papers within clinical dentistry, on all basic science aspects of structure, chemistry, developmental biology, physiology and pathology of relevant tissues, as well as on microbiology, biomaterials and the behavioural sciences as they relate to dentistry. In general, analytical studies are preferred to descriptive ones. Reviews, Short Communications and Letters to the Editor will also be considered for publication. The journal is published bimonthly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信