Qiu Ge, Matthew Lock, Xue Yang, Yuejiao Ding, Juan Yue, Na Zhao, Yun-Song Hu, Yong Zhang, Minliang Yao, Yu-Feng Zang
{"title":"利用 fMRI 引导 TMS 目标:3 T 和 1.5 T fMRI 指标的可靠性和灵敏度。","authors":"Qiu Ge, Matthew Lock, Xue Yang, Yuejiao Ding, Juan Yue, Na Zhao, Yun-Song Hu, Yong Zhang, Minliang Yao, Yu-Feng Zang","doi":"10.1007/s12021-024-09667-5","DOIUrl":null,"url":null,"abstract":"<p><p>US Food and Drug Administration (FDA) cleared a Transcranial Magnetic Stimulation (TMS) system with functional Magnetic Resonance Imaging-guided (fMRI) individualized treatment protocol for major depressive disorder, which employs resting state-fMRI (RS-fMRI) functional connectivity (FC) to pinpoint the target individually to increase the accuracy and effeteness of the stimulation. Furthermore, task activation-guided TMS, as well as the use of RS-fMRI local metrics for targeted the specific abnormal brain regions, are considered a precise scheme for TMS targeting. Since 1.5 T MRI is more available in hospitals, systematic evaluation of the test-retest reliability and sensitivity of fMRI metrics on 1.5 T and 3 T MRI may provide reference for the application of fMRI-guided individualized-precise TMS stimulation. Twenty participants underwent three RS-fMRI scans and one scan of finger-tapping task fMRI with self-initiated (SI) and visual-guided (VG) conditions at both 3 T and 1.5 T. Then the location reliability derived by FC (with three seed regions) and peak activation were assessed by intra-individual distance. The test-retest reliability and sensitivity of five RS-fMRI local metrics were evaluated using intra-class correlation and effect size, separately. The intra-individual distance of peak activation location between 1.5 T and 3 T was 15.8 mm and 19 mm for two conditions, respectively. The intra-individual distance for the FC derived targets at 1.5 T was 9.6-31.2 mm, compared to that of 3 T (7.6-31.1 mm). The test-retest reliability and sensitivity of RS-fMRI local metrics showed similar trends on 1.5 T and 3 T. These findings hasten the application of fMRI-guided individualized TMS treatment in clinical practice.</p>","PeriodicalId":49761,"journal":{"name":"Neuroinformatics","volume":" ","pages":"421-435"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Utilizing fMRI to Guide TMS Targets: the Reliability and Sensitivity of fMRI Metrics at 3 T and 1.5 T.\",\"authors\":\"Qiu Ge, Matthew Lock, Xue Yang, Yuejiao Ding, Juan Yue, Na Zhao, Yun-Song Hu, Yong Zhang, Minliang Yao, Yu-Feng Zang\",\"doi\":\"10.1007/s12021-024-09667-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>US Food and Drug Administration (FDA) cleared a Transcranial Magnetic Stimulation (TMS) system with functional Magnetic Resonance Imaging-guided (fMRI) individualized treatment protocol for major depressive disorder, which employs resting state-fMRI (RS-fMRI) functional connectivity (FC) to pinpoint the target individually to increase the accuracy and effeteness of the stimulation. Furthermore, task activation-guided TMS, as well as the use of RS-fMRI local metrics for targeted the specific abnormal brain regions, are considered a precise scheme for TMS targeting. Since 1.5 T MRI is more available in hospitals, systematic evaluation of the test-retest reliability and sensitivity of fMRI metrics on 1.5 T and 3 T MRI may provide reference for the application of fMRI-guided individualized-precise TMS stimulation. Twenty participants underwent three RS-fMRI scans and one scan of finger-tapping task fMRI with self-initiated (SI) and visual-guided (VG) conditions at both 3 T and 1.5 T. Then the location reliability derived by FC (with three seed regions) and peak activation were assessed by intra-individual distance. The test-retest reliability and sensitivity of five RS-fMRI local metrics were evaluated using intra-class correlation and effect size, separately. The intra-individual distance of peak activation location between 1.5 T and 3 T was 15.8 mm and 19 mm for two conditions, respectively. The intra-individual distance for the FC derived targets at 1.5 T was 9.6-31.2 mm, compared to that of 3 T (7.6-31.1 mm). The test-retest reliability and sensitivity of RS-fMRI local metrics showed similar trends on 1.5 T and 3 T. These findings hasten the application of fMRI-guided individualized TMS treatment in clinical practice.</p>\",\"PeriodicalId\":49761,\"journal\":{\"name\":\"Neuroinformatics\",\"volume\":\" \",\"pages\":\"421-435\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroinformatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12021-024-09667-5\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroinformatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12021-024-09667-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/23 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
摘要
美国食品和药物管理局(FDA)批准了一项经颅磁刺激(TMS)系统与功能磁共振成像(fMRI)引导的重度抑郁障碍个体化治疗方案,该方案采用静息状态-fMRI(RS-fMRI)功能连接(FC)来单独定位目标,以提高刺激的准确性和有效性。此外,任务激活引导的 TMS 以及使用 RS-fMRI 局部指标来锁定特定的异常脑区,被认为是 TMS 靶向的精确方案。由于 1.5 T 核磁共振成像在医院较为普及,因此系统评估 1.5 T 和 3 T 核磁共振成像上的 fMRI 指标的测试-重复可靠性和灵敏度,可为应用 fMRI 引导的个体化精确 TMS 刺激提供参考。20名参与者在3 T和1.5 T条件下接受了3次RS-fMRI扫描和1次自发(SI)和视觉引导(VG)条件下的手指敲击任务fMRI扫描。利用类内相关性和效应大小分别评估了五个 RS-fMRI 局部指标的测试-重复可靠性和敏感性。在两种情况下,1.5 T 和 3 T 之间峰值激活位置的个体内距离分别为 15.8 毫米和 19 毫米。在 1.5 T 条件下,FC 导出目标的个体内距离为 9.6-31.2 mm,而在 3 T 条件下为 7.6-31.1 mm。在 1.5 T 和 3 T 条件下,RS-fMRI 局部指标的测试-重复可靠性和灵敏度显示出相似的趋势。
Utilizing fMRI to Guide TMS Targets: the Reliability and Sensitivity of fMRI Metrics at 3 T and 1.5 T.
US Food and Drug Administration (FDA) cleared a Transcranial Magnetic Stimulation (TMS) system with functional Magnetic Resonance Imaging-guided (fMRI) individualized treatment protocol for major depressive disorder, which employs resting state-fMRI (RS-fMRI) functional connectivity (FC) to pinpoint the target individually to increase the accuracy and effeteness of the stimulation. Furthermore, task activation-guided TMS, as well as the use of RS-fMRI local metrics for targeted the specific abnormal brain regions, are considered a precise scheme for TMS targeting. Since 1.5 T MRI is more available in hospitals, systematic evaluation of the test-retest reliability and sensitivity of fMRI metrics on 1.5 T and 3 T MRI may provide reference for the application of fMRI-guided individualized-precise TMS stimulation. Twenty participants underwent three RS-fMRI scans and one scan of finger-tapping task fMRI with self-initiated (SI) and visual-guided (VG) conditions at both 3 T and 1.5 T. Then the location reliability derived by FC (with three seed regions) and peak activation were assessed by intra-individual distance. The test-retest reliability and sensitivity of five RS-fMRI local metrics were evaluated using intra-class correlation and effect size, separately. The intra-individual distance of peak activation location between 1.5 T and 3 T was 15.8 mm and 19 mm for two conditions, respectively. The intra-individual distance for the FC derived targets at 1.5 T was 9.6-31.2 mm, compared to that of 3 T (7.6-31.1 mm). The test-retest reliability and sensitivity of RS-fMRI local metrics showed similar trends on 1.5 T and 3 T. These findings hasten the application of fMRI-guided individualized TMS treatment in clinical practice.
期刊介绍:
Neuroinformatics publishes original articles and reviews with an emphasis on data structure and software tools related to analysis, modeling, integration, and sharing in all areas of neuroscience research. The editors particularly invite contributions on: (1) Theory and methodology, including discussions on ontologies, modeling approaches, database design, and meta-analyses; (2) Descriptions of developed databases and software tools, and of the methods for their distribution; (3) Relevant experimental results, such as reports accompanie by the release of massive data sets; (4) Computational simulations of models integrating and organizing complex data; and (5) Neuroengineering approaches, including hardware, robotics, and information theory studies.