{"title":"利用有限元分析探索用于牙科植入物的 PEEK 和 CFR-PEEK 材料的生物力学行为。","authors":"Kandula Uday Kumar Reddy, Aqshat Seth, Amol Vuppuluri, Piyush Chandra Verma, Suresh Kumar Reddy Narala, Polavarapu Jayakrishna Babu, Prabakaran Saravanan","doi":"10.2186/jpr.JPR_D_23_00296","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study explored the bio-mechanical properties of polyether ether ketone (PEEK) and carbon fiber reinforced-PEEK (CFR-PEEK) as potential alternatives to traditional dental implant materials, such as titanium (Ti) and zirconia (ZrO<sub>2</sub>). Conventional implant materials often exhibit stress shielding leading to peri-implant bone loss and implant failure.</p><p><strong>Study selection: </strong>Finite element analysis using a three-dimensional computer-aided-design (3D CAD) model of the jawbone with various implant materials (titanium, zirconia, PEEK, and CFR-PEEK) incorporated was implemented to assess the effectiveness of PEEK and CFR-PEEK. Two loading conditions (50 and 100 N) were applied in centric (case-1) and eccentric (case-2) to mimic the oral loading conditions.</p><p><strong>Results: </strong>Titanium and zirconia implants were found to exhibit higher levels of stress shielding and therefore pose greater risks of bone loss and implant failure. Conversely, CFR-PEEK implants demonstrated more-uniform stress distributions that reduce the likelihood of stress shielding compared to their conventional counterparts; consequently, CFR-PEEK implants are particularly suitable for load-bearing applications. Furthermore, maximum strain values on PEEK-implanted cortical bone reached a state of adaptation, referred to as the \"lazy zone\" in which bone growth and bone loss rates are equal, indicating PEEK's potential for a long-term implant utilization.</p><p><strong>Conclusions: </strong>PEEK and CFR-PEEK implants are promising alternatives to conventional dental implants because they provide stress shielding and promote bone health. Improved stress distribution enhances long-term success and durability while mitigating complications, and highlights their applicability to dental implant procedures.</p>","PeriodicalId":16887,"journal":{"name":"Journal of prosthodontic research","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the bio-mechanical behavior of PEEK and CFR-PEEK materials for dental implant applications using finite element analysis.\",\"authors\":\"Kandula Uday Kumar Reddy, Aqshat Seth, Amol Vuppuluri, Piyush Chandra Verma, Suresh Kumar Reddy Narala, Polavarapu Jayakrishna Babu, Prabakaran Saravanan\",\"doi\":\"10.2186/jpr.JPR_D_23_00296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>This study explored the bio-mechanical properties of polyether ether ketone (PEEK) and carbon fiber reinforced-PEEK (CFR-PEEK) as potential alternatives to traditional dental implant materials, such as titanium (Ti) and zirconia (ZrO<sub>2</sub>). Conventional implant materials often exhibit stress shielding leading to peri-implant bone loss and implant failure.</p><p><strong>Study selection: </strong>Finite element analysis using a three-dimensional computer-aided-design (3D CAD) model of the jawbone with various implant materials (titanium, zirconia, PEEK, and CFR-PEEK) incorporated was implemented to assess the effectiveness of PEEK and CFR-PEEK. Two loading conditions (50 and 100 N) were applied in centric (case-1) and eccentric (case-2) to mimic the oral loading conditions.</p><p><strong>Results: </strong>Titanium and zirconia implants were found to exhibit higher levels of stress shielding and therefore pose greater risks of bone loss and implant failure. Conversely, CFR-PEEK implants demonstrated more-uniform stress distributions that reduce the likelihood of stress shielding compared to their conventional counterparts; consequently, CFR-PEEK implants are particularly suitable for load-bearing applications. Furthermore, maximum strain values on PEEK-implanted cortical bone reached a state of adaptation, referred to as the \\\"lazy zone\\\" in which bone growth and bone loss rates are equal, indicating PEEK's potential for a long-term implant utilization.</p><p><strong>Conclusions: </strong>PEEK and CFR-PEEK implants are promising alternatives to conventional dental implants because they provide stress shielding and promote bone health. Improved stress distribution enhances long-term success and durability while mitigating complications, and highlights their applicability to dental implant procedures.</p>\",\"PeriodicalId\":16887,\"journal\":{\"name\":\"Journal of prosthodontic research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of prosthodontic research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2186/jpr.JPR_D_23_00296\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of prosthodontic research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2186/jpr.JPR_D_23_00296","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Exploring the bio-mechanical behavior of PEEK and CFR-PEEK materials for dental implant applications using finite element analysis.
Purpose: This study explored the bio-mechanical properties of polyether ether ketone (PEEK) and carbon fiber reinforced-PEEK (CFR-PEEK) as potential alternatives to traditional dental implant materials, such as titanium (Ti) and zirconia (ZrO2). Conventional implant materials often exhibit stress shielding leading to peri-implant bone loss and implant failure.
Study selection: Finite element analysis using a three-dimensional computer-aided-design (3D CAD) model of the jawbone with various implant materials (titanium, zirconia, PEEK, and CFR-PEEK) incorporated was implemented to assess the effectiveness of PEEK and CFR-PEEK. Two loading conditions (50 and 100 N) were applied in centric (case-1) and eccentric (case-2) to mimic the oral loading conditions.
Results: Titanium and zirconia implants were found to exhibit higher levels of stress shielding and therefore pose greater risks of bone loss and implant failure. Conversely, CFR-PEEK implants demonstrated more-uniform stress distributions that reduce the likelihood of stress shielding compared to their conventional counterparts; consequently, CFR-PEEK implants are particularly suitable for load-bearing applications. Furthermore, maximum strain values on PEEK-implanted cortical bone reached a state of adaptation, referred to as the "lazy zone" in which bone growth and bone loss rates are equal, indicating PEEK's potential for a long-term implant utilization.
Conclusions: PEEK and CFR-PEEK implants are promising alternatives to conventional dental implants because they provide stress shielding and promote bone health. Improved stress distribution enhances long-term success and durability while mitigating complications, and highlights their applicability to dental implant procedures.
期刊介绍:
Journal of Prosthodontic Research is published 4 times annually, in January, April, July, and October, under supervision by the Editorial Board of Japan Prosthodontic Society, which selects all materials submitted for publication.
Journal of Prosthodontic Research originated as an official journal of Japan Prosthodontic Society. It has recently developed a long-range plan to become the most prestigious Asian journal of dental research regarding all aspects of oral and occlusal rehabilitation, fixed/removable prosthodontics, oral implantology and applied oral biology and physiology. The Journal will cover all diagnostic and clinical management aspects necessary to reestablish subjective and objective harmonious oral aesthetics and function.
The most-targeted topics:
1) Clinical Epidemiology and Prosthodontics
2) Fixed/Removable Prosthodontics
3) Oral Implantology
4) Prosthodontics-Related Biosciences (Regenerative Medicine, Bone Biology, Mechanobiology, Microbiology/Immunology)
5) Oral Physiology and Biomechanics (Masticating and Swallowing Function, Parafunction, e.g., bruxism)
6) Orofacial Pain and Temporomandibular Disorders (TMDs)
7) Adhesive Dentistry / Dental Materials / Aesthetic Dentistry
8) Maxillofacial Prosthodontics and Dysphagia Rehabilitation
9) Digital Dentistry
Prosthodontic treatment may become necessary as a result of developmental or acquired disturbances in the orofacial region, of orofacial trauma, or of a variety of dental and oral diseases and orofacial pain conditions.
Reviews, Original articles, technical procedure and case reports can be submitted. Letters to the Editor commenting on papers or any aspect of Journal of Prosthodontic Research are welcomed.