{"title":"MiR-421通过支气管上皮细胞和内皮细胞之间的串扰介导PM2.5诱导的内皮功能障碍。","authors":"Yiqing Chen, Mengting Zeng, Jinxin Xie, Zhihao Xiong, Yuxin Jin, Zihan Pan, Michail Spanos, Tianhui Wang, Hongyun Wang","doi":"10.1080/08958378.2024.2356839","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>PM<sub>2.5</sub> is closely linked to vascular endothelial injury and has emerged as a major threat to human health. Our previous research indicated that exposure to PM<sub>2.5</sub> induced an increased release of <i>miR-421</i> from the bronchial epithelium. However, the role of <i>miR-421</i> in PM<sub>2.5</sub>-induced endothelial injury remains elusive.</p><p><strong>Materials and methods: </strong>We utilized a subacute PM<sub>2.5</sub>-exposure model in mice <i>in vivo</i> and an acute injury cell model <i>in vitro</i> to simulate PM<sub>2.5</sub>-associated endothelial injury. We also used quantitative real-time polymerase chain reaction, western blot, enzyme-linked immunosorbent assay, and immunohistochemistry to investigate the role of <i>miR-421</i> in PM<sub>2.5</sub>-induced endothelial injury.</p><p><strong>Results: </strong>Our findings reveal that inhibition of <i>miR-421</i> attenuated PM<sub>2.5</sub>-induced endothelial injury and hypertension. Mechanistically, <i>miR-421</i> inhibited the expression of <i>angiotensin-converting enzyme 2 (ACE2</i>) in human umbilical vein endothelial cells and upregulated the expression of the downstream molecule inducible <i>nitric oxide synthase (iNOS)</i>, thereby exacerbating PM<sub>2.5</sub>-induced endothelial injury.</p><p><strong>Conclusions: </strong>Our results indicate that PM<sub>2.5</sub> exposure facilitates crosstalk between bronchial epithelial and endothelial cells <i>via miR-421</i>/<i>ACE2</i>/<i>iNOS</i> signaling pathway, mediating endothelial damage and hypertension. <i>MiR-421</i> inhibition may offer a new strategy for the prevention and treatment of PM<sub>2.5</sub>-induced vascular endothelial injury.</p>","PeriodicalId":13561,"journal":{"name":"Inhalation Toxicology","volume":" ","pages":"501-510"},"PeriodicalIF":2.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"<i>MiR-421</i> mediates PM<sub>2.5</sub>-induced endothelial dysfunction via crosstalk between bronchial epithelial and endothelial cells.\",\"authors\":\"Yiqing Chen, Mengting Zeng, Jinxin Xie, Zhihao Xiong, Yuxin Jin, Zihan Pan, Michail Spanos, Tianhui Wang, Hongyun Wang\",\"doi\":\"10.1080/08958378.2024.2356839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>PM<sub>2.5</sub> is closely linked to vascular endothelial injury and has emerged as a major threat to human health. Our previous research indicated that exposure to PM<sub>2.5</sub> induced an increased release of <i>miR-421</i> from the bronchial epithelium. However, the role of <i>miR-421</i> in PM<sub>2.5</sub>-induced endothelial injury remains elusive.</p><p><strong>Materials and methods: </strong>We utilized a subacute PM<sub>2.5</sub>-exposure model in mice <i>in vivo</i> and an acute injury cell model <i>in vitro</i> to simulate PM<sub>2.5</sub>-associated endothelial injury. We also used quantitative real-time polymerase chain reaction, western blot, enzyme-linked immunosorbent assay, and immunohistochemistry to investigate the role of <i>miR-421</i> in PM<sub>2.5</sub>-induced endothelial injury.</p><p><strong>Results: </strong>Our findings reveal that inhibition of <i>miR-421</i> attenuated PM<sub>2.5</sub>-induced endothelial injury and hypertension. Mechanistically, <i>miR-421</i> inhibited the expression of <i>angiotensin-converting enzyme 2 (ACE2</i>) in human umbilical vein endothelial cells and upregulated the expression of the downstream molecule inducible <i>nitric oxide synthase (iNOS)</i>, thereby exacerbating PM<sub>2.5</sub>-induced endothelial injury.</p><p><strong>Conclusions: </strong>Our results indicate that PM<sub>2.5</sub> exposure facilitates crosstalk between bronchial epithelial and endothelial cells <i>via miR-421</i>/<i>ACE2</i>/<i>iNOS</i> signaling pathway, mediating endothelial damage and hypertension. <i>MiR-421</i> inhibition may offer a new strategy for the prevention and treatment of PM<sub>2.5</sub>-induced vascular endothelial injury.</p>\",\"PeriodicalId\":13561,\"journal\":{\"name\":\"Inhalation Toxicology\",\"volume\":\" \",\"pages\":\"501-510\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inhalation Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/08958378.2024.2356839\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inhalation Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08958378.2024.2356839","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/22 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"TOXICOLOGY","Score":null,"Total":0}
MiR-421 mediates PM2.5-induced endothelial dysfunction via crosstalk between bronchial epithelial and endothelial cells.
Objective: PM2.5 is closely linked to vascular endothelial injury and has emerged as a major threat to human health. Our previous research indicated that exposure to PM2.5 induced an increased release of miR-421 from the bronchial epithelium. However, the role of miR-421 in PM2.5-induced endothelial injury remains elusive.
Materials and methods: We utilized a subacute PM2.5-exposure model in mice in vivo and an acute injury cell model in vitro to simulate PM2.5-associated endothelial injury. We also used quantitative real-time polymerase chain reaction, western blot, enzyme-linked immunosorbent assay, and immunohistochemistry to investigate the role of miR-421 in PM2.5-induced endothelial injury.
Results: Our findings reveal that inhibition of miR-421 attenuated PM2.5-induced endothelial injury and hypertension. Mechanistically, miR-421 inhibited the expression of angiotensin-converting enzyme 2 (ACE2) in human umbilical vein endothelial cells and upregulated the expression of the downstream molecule inducible nitric oxide synthase (iNOS), thereby exacerbating PM2.5-induced endothelial injury.
Conclusions: Our results indicate that PM2.5 exposure facilitates crosstalk between bronchial epithelial and endothelial cells via miR-421/ACE2/iNOS signaling pathway, mediating endothelial damage and hypertension. MiR-421 inhibition may offer a new strategy for the prevention and treatment of PM2.5-induced vascular endothelial injury.
期刊介绍:
Inhalation Toxicology is a peer-reviewed publication providing a key forum for the latest accomplishments and advancements in concepts, approaches, and procedures presently being used to evaluate the health risk associated with airborne chemicals.
The journal publishes original research, reviews, symposia, and workshop topics involving the respiratory system’s functions in health and disease, the pathogenesis and mechanism of injury, the extrapolation of animal data to humans, the effects of inhaled substances on extra-pulmonary systems, as well as reliable and innovative models for predicting human disease.