可编程拓扑光子芯片

IF 37.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Tianxiang Dai, Anqi Ma, Jun Mao, Yutian Ao, Xinyu Jia, Yun Zheng, Chonghao Zhai, Yan Yang, Zhihua Li, Bo Tang, Jun Luo, Baile Zhang, Xiaoyong Hu, Qihuang Gong, Jianwei Wang
{"title":"可编程拓扑光子芯片","authors":"Tianxiang Dai, Anqi Ma, Jun Mao, Yutian Ao, Xinyu Jia, Yun Zheng, Chonghao Zhai, Yan Yang, Zhihua Li, Bo Tang, Jun Luo, Baile Zhang, Xiaoyong Hu, Qihuang Gong, Jianwei Wang","doi":"10.1038/s41563-024-01904-1","DOIUrl":null,"url":null,"abstract":"Controlling topological phases of light allows the observation of abundant topological phenomena and the development of robust photonic devices. The prospect of more sophisticated control with topological photonic devices for practical implementations requires high-level programmability. Here we demonstrate a fully programmable topological photonic chip with large-scale integration of silicon photonic nanocircuits and microresonators. Photonic artificial atoms and their interactions in our compound system can be individually addressed and controlled, allowing the arbitrary adjustment of structural parameters and geometrical configurations for the observation of dynamic topological phase transitions and diverse photonic topological insulators. Individual programming of artificial atoms on the generic chip enables the comprehensive statistical characterization of topological robustness against relatively weak disorders, and counterintuitive topological Anderson phase transitions induced by strong disorders. This generic topological photonic chip can be rapidly reprogrammed to implement multifunctionalities, providing a flexible and versatile platform for applications across fundamental science and topological technologies. The authors demonstrate a programmable topological photonic chip with large-scale integration of silicon photonic nanocircuits and microresonators that can be rapidly reprogrammed to implement diverse multifunctionalities.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"23 7","pages":"928-936"},"PeriodicalIF":37.2000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41563-024-01904-1.pdf","citationCount":"0","resultStr":"{\"title\":\"A programmable topological photonic chip\",\"authors\":\"Tianxiang Dai, Anqi Ma, Jun Mao, Yutian Ao, Xinyu Jia, Yun Zheng, Chonghao Zhai, Yan Yang, Zhihua Li, Bo Tang, Jun Luo, Baile Zhang, Xiaoyong Hu, Qihuang Gong, Jianwei Wang\",\"doi\":\"10.1038/s41563-024-01904-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Controlling topological phases of light allows the observation of abundant topological phenomena and the development of robust photonic devices. The prospect of more sophisticated control with topological photonic devices for practical implementations requires high-level programmability. Here we demonstrate a fully programmable topological photonic chip with large-scale integration of silicon photonic nanocircuits and microresonators. Photonic artificial atoms and their interactions in our compound system can be individually addressed and controlled, allowing the arbitrary adjustment of structural parameters and geometrical configurations for the observation of dynamic topological phase transitions and diverse photonic topological insulators. Individual programming of artificial atoms on the generic chip enables the comprehensive statistical characterization of topological robustness against relatively weak disorders, and counterintuitive topological Anderson phase transitions induced by strong disorders. This generic topological photonic chip can be rapidly reprogrammed to implement multifunctionalities, providing a flexible and versatile platform for applications across fundamental science and topological technologies. The authors demonstrate a programmable topological photonic chip with large-scale integration of silicon photonic nanocircuits and microresonators that can be rapidly reprogrammed to implement diverse multifunctionalities.\",\"PeriodicalId\":19058,\"journal\":{\"name\":\"Nature Materials\",\"volume\":\"23 7\",\"pages\":\"928-936\"},\"PeriodicalIF\":37.2000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41563-024-01904-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41563-024-01904-1\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41563-024-01904-1","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

通过控制光的拓扑相位,可以观察到丰富的拓扑现象,并开发出坚固耐用的光子设备。要在实际应用中利用拓扑光子器件实现更复杂的控制,需要高级别的可编程性。在这里,我们展示了大规模集成硅光子纳米电路和微谐振器的完全可编程拓扑光子芯片。在我们的复合系统中,光子人工原子及其相互作用可单独处理和控制,允许任意调整结构参数和几何配置,以观察动态拓扑相变和各种光子拓扑绝缘体。在通用芯片上对人工原子进行单独编程,可以全面统计拓扑稳健性,以应对相对较弱的失调,以及强失调诱发的反直觉拓扑安德森相变。这种通用拓扑光子芯片可以快速重新编程以实现多功能,为基础科学和拓扑技术的应用提供了一个灵活多用的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A programmable topological photonic chip

A programmable topological photonic chip

A programmable topological photonic chip
Controlling topological phases of light allows the observation of abundant topological phenomena and the development of robust photonic devices. The prospect of more sophisticated control with topological photonic devices for practical implementations requires high-level programmability. Here we demonstrate a fully programmable topological photonic chip with large-scale integration of silicon photonic nanocircuits and microresonators. Photonic artificial atoms and their interactions in our compound system can be individually addressed and controlled, allowing the arbitrary adjustment of structural parameters and geometrical configurations for the observation of dynamic topological phase transitions and diverse photonic topological insulators. Individual programming of artificial atoms on the generic chip enables the comprehensive statistical characterization of topological robustness against relatively weak disorders, and counterintuitive topological Anderson phase transitions induced by strong disorders. This generic topological photonic chip can be rapidly reprogrammed to implement multifunctionalities, providing a flexible and versatile platform for applications across fundamental science and topological technologies. The authors demonstrate a programmable topological photonic chip with large-scale integration of silicon photonic nanocircuits and microresonators that can be rapidly reprogrammed to implement diverse multifunctionalities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Materials
Nature Materials 工程技术-材料科学:综合
CiteScore
62.20
自引率
0.70%
发文量
221
审稿时长
3.2 months
期刊介绍: Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology. Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines. Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信