Philip Clinton Offei Adu , Mathias Aakyiir , Xiao Su , Joherul Alam , Linh Chi Tran , Jiabin Dai , Qingshi Meng , Hsu-Chiang Kuan , Jun Ma
{"title":"弹性体/碳纳米管纳米复合材料在机械化学处理、增强机制和应用方面的挑战与进展","authors":"Philip Clinton Offei Adu , Mathias Aakyiir , Xiao Su , Joherul Alam , Linh Chi Tran , Jiabin Dai , Qingshi Meng , Hsu-Chiang Kuan , Jun Ma","doi":"10.1016/j.smmf.2024.100053","DOIUrl":null,"url":null,"abstract":"<div><p>Elastomer/carbon nanotube (CNT) nanocomposites play a pivotal role in the evolution of flexible electronics, aerospace and automotive components, biomedical devices and smart materials. This article explores recent advancements and challenges in elastomer/CNT nanocomposites, with a focus on the role of mechanochemical treatment in dispersing multiwalled CNTs (MWCNTs) and single-walled CNTs (SWCNTs). The review starts with a brief overview of the structure, synthesis and purification methods of CNTs, providing essential background for new researchers to the field. The paper explores various nanocomposite preparation methods, including solution mixing, melt compounding, <em>in situ</em>-polymerisation and latex compounding, highlighting their impact on the dispersion of CNTs in elastomers as well as the limitations. Special attention is given to mechanochemistry, particularly ball milling, as a key technique for enhancing the dispersion of CNTs within the elastomer matrix. The relevant reinforcement mechanisms are also discussed, focusing on the role of the Halpin-Tsai and Einstein-Smallwood-Guth models, as well as the Payne and Mullins effects. Key application areas are discussed, demonstrating the versatility and significance of elastomer nanocomposites. This review identifies critical challenges in the field, including the need for uniform dispersion of CNTs within the elastomer matrix, improvement of interfacial bonding between the CNTs and the elastomer, and the necessity to balance these technological advancements with cost-effectiveness and sustainability considerations. It highlights the need for continued research and development to fully harness the potential of these materials. Conclusively, elastomer/CNT nanocomposites are poised to shape future technological advancements while facing critical challenges that necessitate innovative solutions.</p></div>","PeriodicalId":101164,"journal":{"name":"Smart Materials in Manufacturing","volume":"2 ","pages":"Article 100053"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772810224000102/pdfft?md5=568f31e06255a021c8d917a3fe6ea8a9&pid=1-s2.0-S2772810224000102-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Challenges and advancements in Elastomer/CNT nanocomposites with mechanochemical treatment, reinforcement mechanisms and applications\",\"authors\":\"Philip Clinton Offei Adu , Mathias Aakyiir , Xiao Su , Joherul Alam , Linh Chi Tran , Jiabin Dai , Qingshi Meng , Hsu-Chiang Kuan , Jun Ma\",\"doi\":\"10.1016/j.smmf.2024.100053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Elastomer/carbon nanotube (CNT) nanocomposites play a pivotal role in the evolution of flexible electronics, aerospace and automotive components, biomedical devices and smart materials. This article explores recent advancements and challenges in elastomer/CNT nanocomposites, with a focus on the role of mechanochemical treatment in dispersing multiwalled CNTs (MWCNTs) and single-walled CNTs (SWCNTs). The review starts with a brief overview of the structure, synthesis and purification methods of CNTs, providing essential background for new researchers to the field. The paper explores various nanocomposite preparation methods, including solution mixing, melt compounding, <em>in situ</em>-polymerisation and latex compounding, highlighting their impact on the dispersion of CNTs in elastomers as well as the limitations. Special attention is given to mechanochemistry, particularly ball milling, as a key technique for enhancing the dispersion of CNTs within the elastomer matrix. The relevant reinforcement mechanisms are also discussed, focusing on the role of the Halpin-Tsai and Einstein-Smallwood-Guth models, as well as the Payne and Mullins effects. Key application areas are discussed, demonstrating the versatility and significance of elastomer nanocomposites. This review identifies critical challenges in the field, including the need for uniform dispersion of CNTs within the elastomer matrix, improvement of interfacial bonding between the CNTs and the elastomer, and the necessity to balance these technological advancements with cost-effectiveness and sustainability considerations. It highlights the need for continued research and development to fully harness the potential of these materials. Conclusively, elastomer/CNT nanocomposites are poised to shape future technological advancements while facing critical challenges that necessitate innovative solutions.</p></div>\",\"PeriodicalId\":101164,\"journal\":{\"name\":\"Smart Materials in Manufacturing\",\"volume\":\"2 \",\"pages\":\"Article 100053\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772810224000102/pdfft?md5=568f31e06255a021c8d917a3fe6ea8a9&pid=1-s2.0-S2772810224000102-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart Materials in Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772810224000102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials in Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772810224000102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Challenges and advancements in Elastomer/CNT nanocomposites with mechanochemical treatment, reinforcement mechanisms and applications
Elastomer/carbon nanotube (CNT) nanocomposites play a pivotal role in the evolution of flexible electronics, aerospace and automotive components, biomedical devices and smart materials. This article explores recent advancements and challenges in elastomer/CNT nanocomposites, with a focus on the role of mechanochemical treatment in dispersing multiwalled CNTs (MWCNTs) and single-walled CNTs (SWCNTs). The review starts with a brief overview of the structure, synthesis and purification methods of CNTs, providing essential background for new researchers to the field. The paper explores various nanocomposite preparation methods, including solution mixing, melt compounding, in situ-polymerisation and latex compounding, highlighting their impact on the dispersion of CNTs in elastomers as well as the limitations. Special attention is given to mechanochemistry, particularly ball milling, as a key technique for enhancing the dispersion of CNTs within the elastomer matrix. The relevant reinforcement mechanisms are also discussed, focusing on the role of the Halpin-Tsai and Einstein-Smallwood-Guth models, as well as the Payne and Mullins effects. Key application areas are discussed, demonstrating the versatility and significance of elastomer nanocomposites. This review identifies critical challenges in the field, including the need for uniform dispersion of CNTs within the elastomer matrix, improvement of interfacial bonding between the CNTs and the elastomer, and the necessity to balance these technological advancements with cost-effectiveness and sustainability considerations. It highlights the need for continued research and development to fully harness the potential of these materials. Conclusively, elastomer/CNT nanocomposites are poised to shape future technological advancements while facing critical challenges that necessitate innovative solutions.