Santiago Oviedo-Casado , Javier Prior , Javier Cerrillo
{"title":"通过相关拉姆齐测量进行低频信号检测","authors":"Santiago Oviedo-Casado , Javier Prior , Javier Cerrillo","doi":"10.1016/j.jmr.2024.107691","DOIUrl":null,"url":null,"abstract":"<div><p>The low frequency region of the spectrum is a challenging regime for quantum probes. We support the idea that, in this regime, performing Ramsey measurements carefully controlling the time at which each measurement is initiated is an excellent signal detection strategy. We use the Fisher information to demonstrate a high quality performance in the low frequency regime, compared to more elaborated measurement sequences, and to optimize the correlated Ramsey sequence according to any given experimental parameters, showing that correlated Ramsey rivals with state-of-the-art protocols, and can even outperform commonly employed sequences such as dynamical decoupling in the detection of low frequency signals. Contrary to typical quantum detection protocols for oscillating signals, which require adjusting the time separation between pulses to match the half period of the target signal, and consequently see their scope limited to signals whose period is shorter than the characteristic decoherence time of the probe, or to those protocols whose target is primarily static signals, the time-tagged correlated Ramsey sequence simultaneously tracks the amplitude and the phase information of the target signal, regardless of its frequency, which crucially permits correlating measurements in post-processing, leading to efficient spectral reconstruction.</p></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"363 ","pages":"Article 107691"},"PeriodicalIF":2.0000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1090780724000752/pdfft?md5=1d24603c786dd16956df5daf6da4888f&pid=1-s2.0-S1090780724000752-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Low frequency signal detection via correlated Ramsey measurements\",\"authors\":\"Santiago Oviedo-Casado , Javier Prior , Javier Cerrillo\",\"doi\":\"10.1016/j.jmr.2024.107691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The low frequency region of the spectrum is a challenging regime for quantum probes. We support the idea that, in this regime, performing Ramsey measurements carefully controlling the time at which each measurement is initiated is an excellent signal detection strategy. We use the Fisher information to demonstrate a high quality performance in the low frequency regime, compared to more elaborated measurement sequences, and to optimize the correlated Ramsey sequence according to any given experimental parameters, showing that correlated Ramsey rivals with state-of-the-art protocols, and can even outperform commonly employed sequences such as dynamical decoupling in the detection of low frequency signals. Contrary to typical quantum detection protocols for oscillating signals, which require adjusting the time separation between pulses to match the half period of the target signal, and consequently see their scope limited to signals whose period is shorter than the characteristic decoherence time of the probe, or to those protocols whose target is primarily static signals, the time-tagged correlated Ramsey sequence simultaneously tracks the amplitude and the phase information of the target signal, regardless of its frequency, which crucially permits correlating measurements in post-processing, leading to efficient spectral reconstruction.</p></div>\",\"PeriodicalId\":16267,\"journal\":{\"name\":\"Journal of magnetic resonance\",\"volume\":\"363 \",\"pages\":\"Article 107691\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1090780724000752/pdfft?md5=1d24603c786dd16956df5daf6da4888f&pid=1-s2.0-S1090780724000752-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of magnetic resonance\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1090780724000752\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1090780724000752","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Low frequency signal detection via correlated Ramsey measurements
The low frequency region of the spectrum is a challenging regime for quantum probes. We support the idea that, in this regime, performing Ramsey measurements carefully controlling the time at which each measurement is initiated is an excellent signal detection strategy. We use the Fisher information to demonstrate a high quality performance in the low frequency regime, compared to more elaborated measurement sequences, and to optimize the correlated Ramsey sequence according to any given experimental parameters, showing that correlated Ramsey rivals with state-of-the-art protocols, and can even outperform commonly employed sequences such as dynamical decoupling in the detection of low frequency signals. Contrary to typical quantum detection protocols for oscillating signals, which require adjusting the time separation between pulses to match the half period of the target signal, and consequently see their scope limited to signals whose period is shorter than the characteristic decoherence time of the probe, or to those protocols whose target is primarily static signals, the time-tagged correlated Ramsey sequence simultaneously tracks the amplitude and the phase information of the target signal, regardless of its frequency, which crucially permits correlating measurements in post-processing, leading to efficient spectral reconstruction.
期刊介绍:
The Journal of Magnetic Resonance presents original technical and scientific papers in all aspects of magnetic resonance, including nuclear magnetic resonance spectroscopy (NMR) of solids and liquids, electron spin/paramagnetic resonance (EPR), in vivo magnetic resonance imaging (MRI) and spectroscopy (MRS), nuclear quadrupole resonance (NQR) and magnetic resonance phenomena at nearly zero fields or in combination with optics. The Journal''s main aims include deepening the physical principles underlying all these spectroscopies, publishing significant theoretical and experimental results leading to spectral and spatial progress in these areas, and opening new MR-based applications in chemistry, biology and medicine. The Journal also seeks descriptions of novel apparatuses, new experimental protocols, and new procedures of data analysis and interpretation - including computational and quantum-mechanical methods - capable of advancing MR spectroscopy and imaging.