基于机器学习的认知能力衰退预测模型:在多语言环境中使用语音分析的比较研究。

JAR life Pub Date : 2024-05-16 eCollection Date: 2024-01-01 DOI:10.14283/jarlife.2024.6
B Ceyhan, S Bek, T Önal-Süzek
{"title":"基于机器学习的认知能力衰退预测模型:在多语言环境中使用语音分析的比较研究。","authors":"B Ceyhan, S Bek, T Önal-Süzek","doi":"10.14283/jarlife.2024.6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Mild cognitive impairment (MCI) is a condition commonly associated with dementia. Therefore, early prediction of progression from MCI to dementia is essential for preventing or alleviating cognitive decline. Given that dementia affects cognitive functions like language and speech, detecting disease progression through speech analysis can provide a cost-effective solution for patients and caregivers.</p><p><strong>Design-participants: </strong>In our study, we examined spontaneous speech (SS) and written Mini Mental Status Examination (MMSE) scores from a 60-patient dataset obtained from the Mugla University Dementia Outpatient Clinic (MUDC) and a 153-patient dataset from the Alzheimer's Dementia Recognition through Spontaneous Speech (ADRess) challenge. Our study, for the first time, analyzed the impact of audio features extracted from SS in distinguishing between different degrees of cognitive impairment using both an Indo-European language and a Turkic language, which exhibit distinct word order, agglutination, noun cases, and grammatical markers.</p><p><strong>Results: </strong>When each machine learning model was tested on its respective trained language, we attained a 95% accuracy using the random forest classifier on the ADRess dataset and a 94% accuracy on the MUDC dataset employing the multilayer perceptron (MLP) neural network algorithm. In our second experiment, we evaluated the effectiveness of each language-specific machine learning model on the dataset of the other language. We achieved accuracies of 72% for English and 76% for Turkish, respectively.</p><p><strong>Conclusion: </strong>These findings underscore the cross-language potential of audio features for automated tracking of cognitive impairment progression in MCI patients, offering a convenient and cost-effective option for clinicians or patients.</p>","PeriodicalId":73537,"journal":{"name":"JAR life","volume":"13 ","pages":"43-50"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11106089/pdf/","citationCount":"0","resultStr":"{\"title\":\"Machine Learning-Based Prediction Models for Cognitive Decline Progression: A Comparative Study in Multilingual Settings Using Speech Analysis.\",\"authors\":\"B Ceyhan, S Bek, T Önal-Süzek\",\"doi\":\"10.14283/jarlife.2024.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Mild cognitive impairment (MCI) is a condition commonly associated with dementia. Therefore, early prediction of progression from MCI to dementia is essential for preventing or alleviating cognitive decline. Given that dementia affects cognitive functions like language and speech, detecting disease progression through speech analysis can provide a cost-effective solution for patients and caregivers.</p><p><strong>Design-participants: </strong>In our study, we examined spontaneous speech (SS) and written Mini Mental Status Examination (MMSE) scores from a 60-patient dataset obtained from the Mugla University Dementia Outpatient Clinic (MUDC) and a 153-patient dataset from the Alzheimer's Dementia Recognition through Spontaneous Speech (ADRess) challenge. Our study, for the first time, analyzed the impact of audio features extracted from SS in distinguishing between different degrees of cognitive impairment using both an Indo-European language and a Turkic language, which exhibit distinct word order, agglutination, noun cases, and grammatical markers.</p><p><strong>Results: </strong>When each machine learning model was tested on its respective trained language, we attained a 95% accuracy using the random forest classifier on the ADRess dataset and a 94% accuracy on the MUDC dataset employing the multilayer perceptron (MLP) neural network algorithm. In our second experiment, we evaluated the effectiveness of each language-specific machine learning model on the dataset of the other language. We achieved accuracies of 72% for English and 76% for Turkish, respectively.</p><p><strong>Conclusion: </strong>These findings underscore the cross-language potential of audio features for automated tracking of cognitive impairment progression in MCI patients, offering a convenient and cost-effective option for clinicians or patients.</p>\",\"PeriodicalId\":73537,\"journal\":{\"name\":\"JAR life\",\"volume\":\"13 \",\"pages\":\"43-50\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11106089/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JAR life\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14283/jarlife.2024.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JAR life","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14283/jarlife.2024.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:轻度认知功能障碍(MCI)通常与痴呆症相关。因此,及早预测 MCI 向痴呆症的发展对于预防或缓解认知功能衰退至关重要。鉴于痴呆症会影响语言和言语等认知功能,通过言语分析检测疾病进展可为患者和护理人员提供一种经济有效的解决方案:在我们的研究中,我们检查了来自穆格拉大学痴呆症门诊(MUDC)的 60 名患者数据集和来自阿尔茨海默氏症痴呆症自发言语识别(ADRess)挑战赛的 153 名患者数据集的自发言语(SS)和迷你精神状态检查(MMSE)书面评分。我们的研究首次使用印欧语和突厥语分析了从自发语音中提取的音频特征对区分不同程度认知障碍的影响:当每个机器学习模型在各自的训练语言上进行测试时,我们在 ADRess 数据集上使用随机森林分类器达到了 95% 的准确率,在 MUDC 数据集上使用多层感知器 (MLP) 神经网络算法达到了 94% 的准确率。在第二个实验中,我们评估了每种特定语言的机器学习模型在另一种语言数据集上的有效性。英语和土耳其语的准确率分别为 72% 和 76%:这些研究结果凸显了音频特征在自动跟踪 MCI 患者认知障碍进展方面的跨语言潜力,为临床医生或患者提供了一种方便、经济的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning-Based Prediction Models for Cognitive Decline Progression: A Comparative Study in Multilingual Settings Using Speech Analysis.

Background: Mild cognitive impairment (MCI) is a condition commonly associated with dementia. Therefore, early prediction of progression from MCI to dementia is essential for preventing or alleviating cognitive decline. Given that dementia affects cognitive functions like language and speech, detecting disease progression through speech analysis can provide a cost-effective solution for patients and caregivers.

Design-participants: In our study, we examined spontaneous speech (SS) and written Mini Mental Status Examination (MMSE) scores from a 60-patient dataset obtained from the Mugla University Dementia Outpatient Clinic (MUDC) and a 153-patient dataset from the Alzheimer's Dementia Recognition through Spontaneous Speech (ADRess) challenge. Our study, for the first time, analyzed the impact of audio features extracted from SS in distinguishing between different degrees of cognitive impairment using both an Indo-European language and a Turkic language, which exhibit distinct word order, agglutination, noun cases, and grammatical markers.

Results: When each machine learning model was tested on its respective trained language, we attained a 95% accuracy using the random forest classifier on the ADRess dataset and a 94% accuracy on the MUDC dataset employing the multilayer perceptron (MLP) neural network algorithm. In our second experiment, we evaluated the effectiveness of each language-specific machine learning model on the dataset of the other language. We achieved accuracies of 72% for English and 76% for Turkish, respectively.

Conclusion: These findings underscore the cross-language potential of audio features for automated tracking of cognitive impairment progression in MCI patients, offering a convenient and cost-effective option for clinicians or patients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信