{"title":"背外侧前额叶皮层共表达模块 QTL 的批判性推理。","authors":"Alanna C Cote, Hannah E Young, Laura M Huckins","doi":"10.1016/j.xhgg.2024.100311","DOIUrl":null,"url":null,"abstract":"<p><p>Expression quantitative trait locus (eQTL) analysis is a popular method of gaining insight into the function of regulatory variation. While cis-eQTL resources have been instrumental in linking genome-wide association study variants to gene function, complex trait heritability may be additionally mediated by other forms of gene regulation. Toward this end, novel eQTL methods leverage gene co-expression (module-QTL) to investigate joint regulation of gene modules by single genetic variants. Here we broadly define a \"module-QTL\" as the association of a genetic variant with a summary measure of gene co-expression. This approach aims to reduce the multiple testing burden of a trans-eQTL search through the consolidation of gene-based testing and provide biological context to eQTLs shared between genes. In this article we provide an in-depth examination of the co-expression module eQTL (module-QTL) through literature review, theoretical investigation, and real-data application of the module-QTL to three large prefrontal cortex genotype-RNA sequencing datasets. We find module-QTLs in our study that are disease associated and reproducible are not additionally informative beyond cis- or trans-eQTLs for module genes. Through comparison to prior studies, we highlight promises and limitations of the module-QTL across study designs and provide recommendations for further investigation of the module-QTL framework.</p>","PeriodicalId":34530,"journal":{"name":"HGG Advances","volume":" ","pages":"100311"},"PeriodicalIF":3.3000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11214266/pdf/","citationCount":"0","resultStr":"{\"title\":\"Critical reasoning on the co-expression module QTL in the dorsolateral prefrontal cortex.\",\"authors\":\"Alanna C Cote, Hannah E Young, Laura M Huckins\",\"doi\":\"10.1016/j.xhgg.2024.100311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Expression quantitative trait locus (eQTL) analysis is a popular method of gaining insight into the function of regulatory variation. While cis-eQTL resources have been instrumental in linking genome-wide association study variants to gene function, complex trait heritability may be additionally mediated by other forms of gene regulation. Toward this end, novel eQTL methods leverage gene co-expression (module-QTL) to investigate joint regulation of gene modules by single genetic variants. Here we broadly define a \\\"module-QTL\\\" as the association of a genetic variant with a summary measure of gene co-expression. This approach aims to reduce the multiple testing burden of a trans-eQTL search through the consolidation of gene-based testing and provide biological context to eQTLs shared between genes. In this article we provide an in-depth examination of the co-expression module eQTL (module-QTL) through literature review, theoretical investigation, and real-data application of the module-QTL to three large prefrontal cortex genotype-RNA sequencing datasets. We find module-QTLs in our study that are disease associated and reproducible are not additionally informative beyond cis- or trans-eQTLs for module genes. Through comparison to prior studies, we highlight promises and limitations of the module-QTL across study designs and provide recommendations for further investigation of the module-QTL framework.</p>\",\"PeriodicalId\":34530,\"journal\":{\"name\":\"HGG Advances\",\"volume\":\" \",\"pages\":\"100311\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11214266/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HGG Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xhgg.2024.100311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HGG Advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xhgg.2024.100311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Critical reasoning on the co-expression module QTL in the dorsolateral prefrontal cortex.
Expression quantitative trait locus (eQTL) analysis is a popular method of gaining insight into the function of regulatory variation. While cis-eQTL resources have been instrumental in linking genome-wide association study variants to gene function, complex trait heritability may be additionally mediated by other forms of gene regulation. Toward this end, novel eQTL methods leverage gene co-expression (module-QTL) to investigate joint regulation of gene modules by single genetic variants. Here we broadly define a "module-QTL" as the association of a genetic variant with a summary measure of gene co-expression. This approach aims to reduce the multiple testing burden of a trans-eQTL search through the consolidation of gene-based testing and provide biological context to eQTLs shared between genes. In this article we provide an in-depth examination of the co-expression module eQTL (module-QTL) through literature review, theoretical investigation, and real-data application of the module-QTL to three large prefrontal cortex genotype-RNA sequencing datasets. We find module-QTLs in our study that are disease associated and reproducible are not additionally informative beyond cis- or trans-eQTLs for module genes. Through comparison to prior studies, we highlight promises and limitations of the module-QTL across study designs and provide recommendations for further investigation of the module-QTL framework.