Motohiro Yoshioka, Mai Shibata, Kohei Morita, M Thoihidul Islam, Masaya Fujita, Koichi Hatta, Makoto Tougou, Yukio Tosa, Soichiro Asuke
{"title":"通过加入 Rmg8 培育出在幼苗期和抽穗期都能抵抗小麦稻瘟病的近等基因小麦品系。","authors":"Motohiro Yoshioka, Mai Shibata, Kohei Morita, M Thoihidul Islam, Masaya Fujita, Koichi Hatta, Makoto Tougou, Yukio Tosa, Soichiro Asuke","doi":"10.1094/PHYTO-07-23-0234-R","DOIUrl":null,"url":null,"abstract":"<p><p>Wheat blast caused by <i>Pyricularia oryzae</i> pathotype <i>Triticum</i> (MoT) has been transmitted from South America to Bangladesh and Zambia and is now spreading in these countries. To prepare against its further spread to Asian countries, we introduced <i>Rmg8</i>, a gene for resistance to wheat blast, into a Japanese elite cultivar, Chikugoizumi (ChI), through recurrent backcrosses and established ChI near-isogenic lines, #2-1-10 with the <i>Rmg8</i>/<i>Rmg8</i> genotype and #4-2-10 with the <i>rmg8</i>/<i>rmg8</i> genotype. A molecular analysis suggested that at least 96.6% of the #2-1-10 genome was derived from the recurrent parent ChI. The #2-1-10 line was resistant to MoT not only in primary leaves at the seedling stage but also in spikes and flag leaves at the heading stage. The strength of the resistance in spikes of this <i>Rmg8</i> carrier was comparable to that of a carrier of the 2NS segment, which has been the only genetic resource released to farmers' fields for wheat blast resistance. On the other hand, the 2NS resistance was not expressed on leaves at the seedling stage nor flag leaves at the heading stage. Considering that leaf blast has been increasingly reported and regarded as an important inoculum source for spike blast, <i>Rmg8</i> expressed at both the seedling and heading stages, or more strictly in both leaves and spikes, is suggested to be useful to prevent the spread of MoT in Asia and Africa.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":"1843-1850"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Breeding of a Near-Isogenic Wheat Line Resistant to Wheat Blast at Both Seedling and Heading Stages Through Incorporation of <i>Rmg8</i>.\",\"authors\":\"Motohiro Yoshioka, Mai Shibata, Kohei Morita, M Thoihidul Islam, Masaya Fujita, Koichi Hatta, Makoto Tougou, Yukio Tosa, Soichiro Asuke\",\"doi\":\"10.1094/PHYTO-07-23-0234-R\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Wheat blast caused by <i>Pyricularia oryzae</i> pathotype <i>Triticum</i> (MoT) has been transmitted from South America to Bangladesh and Zambia and is now spreading in these countries. To prepare against its further spread to Asian countries, we introduced <i>Rmg8</i>, a gene for resistance to wheat blast, into a Japanese elite cultivar, Chikugoizumi (ChI), through recurrent backcrosses and established ChI near-isogenic lines, #2-1-10 with the <i>Rmg8</i>/<i>Rmg8</i> genotype and #4-2-10 with the <i>rmg8</i>/<i>rmg8</i> genotype. A molecular analysis suggested that at least 96.6% of the #2-1-10 genome was derived from the recurrent parent ChI. The #2-1-10 line was resistant to MoT not only in primary leaves at the seedling stage but also in spikes and flag leaves at the heading stage. The strength of the resistance in spikes of this <i>Rmg8</i> carrier was comparable to that of a carrier of the 2NS segment, which has been the only genetic resource released to farmers' fields for wheat blast resistance. On the other hand, the 2NS resistance was not expressed on leaves at the seedling stage nor flag leaves at the heading stage. Considering that leaf blast has been increasingly reported and regarded as an important inoculum source for spike blast, <i>Rmg8</i> expressed at both the seedling and heading stages, or more strictly in both leaves and spikes, is suggested to be useful to prevent the spread of MoT in Asia and Africa.</p>\",\"PeriodicalId\":20410,\"journal\":{\"name\":\"Phytopathology\",\"volume\":\" \",\"pages\":\"1843-1850\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Phytopathology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1094/PHYTO-07-23-0234-R\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytopathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1094/PHYTO-07-23-0234-R","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/31 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Breeding of a Near-Isogenic Wheat Line Resistant to Wheat Blast at Both Seedling and Heading Stages Through Incorporation of Rmg8.
Wheat blast caused by Pyricularia oryzae pathotype Triticum (MoT) has been transmitted from South America to Bangladesh and Zambia and is now spreading in these countries. To prepare against its further spread to Asian countries, we introduced Rmg8, a gene for resistance to wheat blast, into a Japanese elite cultivar, Chikugoizumi (ChI), through recurrent backcrosses and established ChI near-isogenic lines, #2-1-10 with the Rmg8/Rmg8 genotype and #4-2-10 with the rmg8/rmg8 genotype. A molecular analysis suggested that at least 96.6% of the #2-1-10 genome was derived from the recurrent parent ChI. The #2-1-10 line was resistant to MoT not only in primary leaves at the seedling stage but also in spikes and flag leaves at the heading stage. The strength of the resistance in spikes of this Rmg8 carrier was comparable to that of a carrier of the 2NS segment, which has been the only genetic resource released to farmers' fields for wheat blast resistance. On the other hand, the 2NS resistance was not expressed on leaves at the seedling stage nor flag leaves at the heading stage. Considering that leaf blast has been increasingly reported and regarded as an important inoculum source for spike blast, Rmg8 expressed at both the seedling and heading stages, or more strictly in both leaves and spikes, is suggested to be useful to prevent the spread of MoT in Asia and Africa.
期刊介绍:
Phytopathology publishes articles on fundamental research that advances understanding of the nature of plant diseases, the agents that cause them, their spread, the losses they cause, and measures that can be used to control them. Phytopathology considers manuscripts covering all aspects of plant diseases including bacteriology, host-parasite biochemistry and cell biology, biological control, disease control and pest management, description of new pathogen species description of new pathogen species, ecology and population biology, epidemiology, disease etiology, host genetics and resistance, mycology, nematology, plant stress and abiotic disorders, postharvest pathology and mycotoxins, and virology. Papers dealing mainly with taxonomy, such as descriptions of new plant pathogen taxa are acceptable if they include plant disease research results such as pathogenicity, host range, etc. Taxonomic papers that focus on classification, identification, and nomenclature below the subspecies level may also be submitted to Phytopathology.