Huayu Hou, Jennifer Carns, Richard A Schwarz, Ann M Gillenwater, Sharmila Anandasabapathy, Rebecca R Richards-Kortum
{"title":"使用局部亚甲蓝对低成本扫描暗场显微内窥镜进行核形态学成像。","authors":"Huayu Hou, Jennifer Carns, Richard A Schwarz, Ann M Gillenwater, Sharmila Anandasabapathy, Rebecca R Richards-Kortum","doi":"10.1117/1.JBO.29.5.050501","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>Fiber-optic microendoscopy is a promising approach to noninvasively visualize epithelial nuclear morphometry for early cancer and precancer detection. However, the broader clinical application of this approach is limited by a lack of topical contrast agents available for <i>in vivo</i> use.</p><p><strong>Aim: </strong>The aim of this study was to evaluate the ability to image nuclear morphometry <i>in vivo</i> with a novel fiber-optic microendoscope used together with topical application of methylene blue (MB), a dye with FDA approval for use in chromoendoscopy in the gastrointestinal tract.</p><p><strong>Approach: </strong>The low-cost, high-resolution microendoscope implements scanning darkfield imaging without complex optomechanical components by leveraging programmable illumination and the rolling shutter of the image sensor. We validate the integration of our system and MB staining for visualizing epithelial cell nuclei by performing <i>ex vivo</i> imaging on fresh animal specimens and <i>in vivo</i> imaging on healthy volunteers.</p><p><strong>Results: </strong>The results indicate that scanning darkfield imaging significantly reduces specular reflection and resolves epithelial nuclei with enhanced image contrast and spatial resolution compared to non-scanning widefield imaging. The image quality of darkfield images with MB staining is comparable to that of fluorescence images with proflavine staining.</p><p><strong>Conclusions: </strong>Our approach enables real-time microscopic evaluation of nuclear patterns and has the potential to be a powerful noninvasive tool for early cancer detection.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"29 5","pages":"050501"},"PeriodicalIF":3.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11107336/pdf/","citationCount":"0","resultStr":"{\"title\":\"Use of topical methylene blue to image nuclear morphometry with a low-cost scanning darkfield microendoscope.\",\"authors\":\"Huayu Hou, Jennifer Carns, Richard A Schwarz, Ann M Gillenwater, Sharmila Anandasabapathy, Rebecca R Richards-Kortum\",\"doi\":\"10.1117/1.JBO.29.5.050501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Significance: </strong>Fiber-optic microendoscopy is a promising approach to noninvasively visualize epithelial nuclear morphometry for early cancer and precancer detection. However, the broader clinical application of this approach is limited by a lack of topical contrast agents available for <i>in vivo</i> use.</p><p><strong>Aim: </strong>The aim of this study was to evaluate the ability to image nuclear morphometry <i>in vivo</i> with a novel fiber-optic microendoscope used together with topical application of methylene blue (MB), a dye with FDA approval for use in chromoendoscopy in the gastrointestinal tract.</p><p><strong>Approach: </strong>The low-cost, high-resolution microendoscope implements scanning darkfield imaging without complex optomechanical components by leveraging programmable illumination and the rolling shutter of the image sensor. We validate the integration of our system and MB staining for visualizing epithelial cell nuclei by performing <i>ex vivo</i> imaging on fresh animal specimens and <i>in vivo</i> imaging on healthy volunteers.</p><p><strong>Results: </strong>The results indicate that scanning darkfield imaging significantly reduces specular reflection and resolves epithelial nuclei with enhanced image contrast and spatial resolution compared to non-scanning widefield imaging. The image quality of darkfield images with MB staining is comparable to that of fluorescence images with proflavine staining.</p><p><strong>Conclusions: </strong>Our approach enables real-time microscopic evaluation of nuclear patterns and has the potential to be a powerful noninvasive tool for early cancer detection.</p>\",\"PeriodicalId\":15264,\"journal\":{\"name\":\"Journal of Biomedical Optics\",\"volume\":\"29 5\",\"pages\":\"050501\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11107336/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomedical Optics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JBO.29.5.050501\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Optics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JBO.29.5.050501","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Use of topical methylene blue to image nuclear morphometry with a low-cost scanning darkfield microendoscope.
Significance: Fiber-optic microendoscopy is a promising approach to noninvasively visualize epithelial nuclear morphometry for early cancer and precancer detection. However, the broader clinical application of this approach is limited by a lack of topical contrast agents available for in vivo use.
Aim: The aim of this study was to evaluate the ability to image nuclear morphometry in vivo with a novel fiber-optic microendoscope used together with topical application of methylene blue (MB), a dye with FDA approval for use in chromoendoscopy in the gastrointestinal tract.
Approach: The low-cost, high-resolution microendoscope implements scanning darkfield imaging without complex optomechanical components by leveraging programmable illumination and the rolling shutter of the image sensor. We validate the integration of our system and MB staining for visualizing epithelial cell nuclei by performing ex vivo imaging on fresh animal specimens and in vivo imaging on healthy volunteers.
Results: The results indicate that scanning darkfield imaging significantly reduces specular reflection and resolves epithelial nuclei with enhanced image contrast and spatial resolution compared to non-scanning widefield imaging. The image quality of darkfield images with MB staining is comparable to that of fluorescence images with proflavine staining.
Conclusions: Our approach enables real-time microscopic evaluation of nuclear patterns and has the potential to be a powerful noninvasive tool for early cancer detection.
期刊介绍:
The Journal of Biomedical Optics publishes peer-reviewed papers on the use of modern optical technology for improved health care and biomedical research.