Adriana Messyasz, Minna K. Männistö, Lee J. Kerkhof, Max M. Häggblom
{"title":"Tunturibacter gen. nov. 的基因组分析和描述扩大了苔原土壤中 Terriglobia 的多样性。","authors":"Adriana Messyasz, Minna K. Männistö, Lee J. Kerkhof, Max M. Häggblom","doi":"10.1111/1462-2920.16640","DOIUrl":null,"url":null,"abstract":"<p>Increased temperatures in Arctic tundra ecosystems are leading to higher microbial respiration rates of soil organic matter, resulting in the release of carbon dioxide and methane. To understand the effects of this microbial activity, it is important to better characterize the diverse microbial communities in Arctic soil. Our goal is to refine our understanding of the phylogenetic diversity of <i>Terriglobia</i>, a common but elusive group within the <i>Acidobacteriota</i> phylum. This will help us link this diversity to variations in carbon and nitrogen usage patterns. We used long-read Oxford Nanopore MinION sequences in combination with metagenomic short-read sequences to assemble complete <i>Acidobacteriota</i> genomes. This allowed us to build multi-locus phylogenies and annotate pangenome markers to distinguish <i>Acidobacteriota</i> strains from several tundra soil isolates. We identified a phylogenetic cluster containing four new species previously associated with <i>Edaphobacter lichenicola</i>. We conclude that this cluster represents a new genus, which we have named <i>Tunturibacter</i>. We describe four new species: <i>Tunturibacter lichenicola</i> comb. nov., <i>Tunturibacter empetritectus</i> sp. nov., <i>Tunturibacter gelidoferens</i> sp. nov., and <i>Tunturibacter psychrotolerans</i> sp. nov. By uncovering new species and strains within the <i>Terriglobia</i> and improving the accuracy of their phylogenetic placements, we hope to enhance our understanding of this complex phylum and shed light on the mechanisms that shape microbial communities in polar soils.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16640","citationCount":"0","resultStr":"{\"title\":\"Genome analysis and description of Tunturibacter gen. nov. expands the diversity of Terriglobia in tundra soils\",\"authors\":\"Adriana Messyasz, Minna K. Männistö, Lee J. Kerkhof, Max M. Häggblom\",\"doi\":\"10.1111/1462-2920.16640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Increased temperatures in Arctic tundra ecosystems are leading to higher microbial respiration rates of soil organic matter, resulting in the release of carbon dioxide and methane. To understand the effects of this microbial activity, it is important to better characterize the diverse microbial communities in Arctic soil. Our goal is to refine our understanding of the phylogenetic diversity of <i>Terriglobia</i>, a common but elusive group within the <i>Acidobacteriota</i> phylum. This will help us link this diversity to variations in carbon and nitrogen usage patterns. We used long-read Oxford Nanopore MinION sequences in combination with metagenomic short-read sequences to assemble complete <i>Acidobacteriota</i> genomes. This allowed us to build multi-locus phylogenies and annotate pangenome markers to distinguish <i>Acidobacteriota</i> strains from several tundra soil isolates. We identified a phylogenetic cluster containing four new species previously associated with <i>Edaphobacter lichenicola</i>. We conclude that this cluster represents a new genus, which we have named <i>Tunturibacter</i>. We describe four new species: <i>Tunturibacter lichenicola</i> comb. nov., <i>Tunturibacter empetritectus</i> sp. nov., <i>Tunturibacter gelidoferens</i> sp. nov., and <i>Tunturibacter psychrotolerans</i> sp. nov. By uncovering new species and strains within the <i>Terriglobia</i> and improving the accuracy of their phylogenetic placements, we hope to enhance our understanding of this complex phylum and shed light on the mechanisms that shape microbial communities in polar soils.</p>\",\"PeriodicalId\":11898,\"journal\":{\"name\":\"Environmental microbiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16640\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.16640\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental microbiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.16640","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Genome analysis and description of Tunturibacter gen. nov. expands the diversity of Terriglobia in tundra soils
Increased temperatures in Arctic tundra ecosystems are leading to higher microbial respiration rates of soil organic matter, resulting in the release of carbon dioxide and methane. To understand the effects of this microbial activity, it is important to better characterize the diverse microbial communities in Arctic soil. Our goal is to refine our understanding of the phylogenetic diversity of Terriglobia, a common but elusive group within the Acidobacteriota phylum. This will help us link this diversity to variations in carbon and nitrogen usage patterns. We used long-read Oxford Nanopore MinION sequences in combination with metagenomic short-read sequences to assemble complete Acidobacteriota genomes. This allowed us to build multi-locus phylogenies and annotate pangenome markers to distinguish Acidobacteriota strains from several tundra soil isolates. We identified a phylogenetic cluster containing four new species previously associated with Edaphobacter lichenicola. We conclude that this cluster represents a new genus, which we have named Tunturibacter. We describe four new species: Tunturibacter lichenicola comb. nov., Tunturibacter empetritectus sp. nov., Tunturibacter gelidoferens sp. nov., and Tunturibacter psychrotolerans sp. nov. By uncovering new species and strains within the Terriglobia and improving the accuracy of their phylogenetic placements, we hope to enhance our understanding of this complex phylum and shed light on the mechanisms that shape microbial communities in polar soils.
期刊介绍:
Environmental Microbiology provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following:
the structure, activities and communal behaviour of microbial communities
microbial community genetics and evolutionary processes
microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors
microbes in the tree of life, microbial diversification and evolution
population biology and clonal structure
microbial metabolic and structural diversity
microbial physiology, growth and survival
microbes and surfaces, adhesion and biofouling
responses to environmental signals and stress factors
modelling and theory development
pollution microbiology
extremophiles and life in extreme and unusual little-explored habitats
element cycles and biogeochemical processes, primary and secondary production
microbes in a changing world, microbially-influenced global changes
evolution and diversity of archaeal and bacterial viruses
new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens