{"title":"安泼辣素通过抑制巨噬细胞中的 NLRP3 炎性体通路,促进糖尿病伤口愈合和角质细胞进展。","authors":"Qiong Zhou, Geng Cheng","doi":"10.4149/gpb_2023039","DOIUrl":null,"url":null,"abstract":"<p><p>Ampelopsin (AMP) had a wound-healing effect in rat skin wounds with or without purulent infection. However, the role of AMP in diabetic wound healing remains poorly defined. Wounds were created on the dorsal skin of type 2 diabetic mouse model, and the histological features of wounds were examined by hematoxylin and eosin (HE) staining. Caspase-1 activity and the secretion of inflammatory cytokines were detected by enzyme-linked immunosorbent assay (ELISA). Cell viability and migration were examined through cell counting kit-8 (CCK-8) and wound healing assays, respectively. AMP facilitated wound healing in vivo. AMP notably facilitated platelet endothelial cell adhesion molecule-31 (CD31), collagen type I alpha 1 chain (COL1A1), and alpha-smooth muscle actin (α-SMA), and inhibited matrix metallopeptidase 9 (MMP9) and cyclooxygenase 2 (Cox2) expression in diabetic wounds. The inflammasome pathway was implicated in skin injury. AMP inhibited pro-inflammatory factor secretions and NLR family pyrin domain containing 3 (NLRP3) inflammasome pathway in diabetic wounds and high glucose-treated THP-1 macrophages. AMP-mediated NLRP3 inflammasome inhibition in THP-1 macrophages increased cell viability and migratory capacity in HaCaT cells. AMP facilitated diabetic wound healing and increased keratinocyte cell viability and migratory ability by inhibiting the NLRP3 inflammasome pathway in macrophages.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ampelopsin facilitates diabetic wound healing and keratinocyte cell progression by inhibiting the NLRP3 inflammasome pathway in macrophages.\",\"authors\":\"Qiong Zhou, Geng Cheng\",\"doi\":\"10.4149/gpb_2023039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ampelopsin (AMP) had a wound-healing effect in rat skin wounds with or without purulent infection. However, the role of AMP in diabetic wound healing remains poorly defined. Wounds were created on the dorsal skin of type 2 diabetic mouse model, and the histological features of wounds were examined by hematoxylin and eosin (HE) staining. Caspase-1 activity and the secretion of inflammatory cytokines were detected by enzyme-linked immunosorbent assay (ELISA). Cell viability and migration were examined through cell counting kit-8 (CCK-8) and wound healing assays, respectively. AMP facilitated wound healing in vivo. AMP notably facilitated platelet endothelial cell adhesion molecule-31 (CD31), collagen type I alpha 1 chain (COL1A1), and alpha-smooth muscle actin (α-SMA), and inhibited matrix metallopeptidase 9 (MMP9) and cyclooxygenase 2 (Cox2) expression in diabetic wounds. The inflammasome pathway was implicated in skin injury. AMP inhibited pro-inflammatory factor secretions and NLR family pyrin domain containing 3 (NLRP3) inflammasome pathway in diabetic wounds and high glucose-treated THP-1 macrophages. AMP-mediated NLRP3 inflammasome inhibition in THP-1 macrophages increased cell viability and migratory capacity in HaCaT cells. AMP facilitated diabetic wound healing and increased keratinocyte cell viability and migratory ability by inhibiting the NLRP3 inflammasome pathway in macrophages.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.4149/gpb_2023039\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.4149/gpb_2023039","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Ampelopsin facilitates diabetic wound healing and keratinocyte cell progression by inhibiting the NLRP3 inflammasome pathway in macrophages.
Ampelopsin (AMP) had a wound-healing effect in rat skin wounds with or without purulent infection. However, the role of AMP in diabetic wound healing remains poorly defined. Wounds were created on the dorsal skin of type 2 diabetic mouse model, and the histological features of wounds were examined by hematoxylin and eosin (HE) staining. Caspase-1 activity and the secretion of inflammatory cytokines were detected by enzyme-linked immunosorbent assay (ELISA). Cell viability and migration were examined through cell counting kit-8 (CCK-8) and wound healing assays, respectively. AMP facilitated wound healing in vivo. AMP notably facilitated platelet endothelial cell adhesion molecule-31 (CD31), collagen type I alpha 1 chain (COL1A1), and alpha-smooth muscle actin (α-SMA), and inhibited matrix metallopeptidase 9 (MMP9) and cyclooxygenase 2 (Cox2) expression in diabetic wounds. The inflammasome pathway was implicated in skin injury. AMP inhibited pro-inflammatory factor secretions and NLR family pyrin domain containing 3 (NLRP3) inflammasome pathway in diabetic wounds and high glucose-treated THP-1 macrophages. AMP-mediated NLRP3 inflammasome inhibition in THP-1 macrophages increased cell viability and migratory capacity in HaCaT cells. AMP facilitated diabetic wound healing and increased keratinocyte cell viability and migratory ability by inhibiting the NLRP3 inflammasome pathway in macrophages.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.