利用荧光微球灌注对整鼠血管网进行光片显微成像

IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS
Xiaojie Cao, Xiaoyan Li, Min Li, Jiawei Sun, Zhaoshuai Gao, Xiaowei Li, Qian Li, Zhifeng Shao, Chunhai Fan, Jielin Sun
{"title":"利用荧光微球灌注对整鼠血管网进行光片显微成像","authors":"Xiaojie Cao, Xiaoyan Li, Min Li, Jiawei Sun, Zhaoshuai Gao, Xiaowei Li, Qian Li, Zhifeng Shao, Chunhai Fan, Jielin Sun","doi":"10.1021/acsbiomaterials.4c00546","DOIUrl":null,"url":null,"abstract":"<p><p>Visualizing the whole vascular network system is crucial for understanding the pathogenesis of specific diseases and devising targeted therapeutic interventions. Although the combination of light sheet microscopy and tissue-clearing methods has emerged as a promising approach for investigating the blood vascular network, leveraging the spatial resolution down to the capillary level and the ability to image centimeter-scale samples remains difficult. Especially, as the resolution improves, the issue of photobleaching outside the field of view poses a challenge to image the whole vascular network of adult mice at capillary resolution. Here, we devise a fluorescent microsphere vascular perfusion method to enable labeling of the whole vascular network in adult mice, which overcomes the photobleaching limit during the imaging of large samples. Moreover, by combining the utilization of a large-scale light-sheet microscope and tissue clearing protocols for whole-mouse samples, we achieve the capillary-level imaging resolution (3.2 × 3.2 × 6.5 μm) of the whole vascular network with dimensions of 45 × 15 × 82 mm in adult mice. This method thus holds great potential to deliver mesoscopic resolution images of various tissue organs for whole-animal imaging.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Light-Sheet Microscopic Imaging of Whole-Mouse Vascular Network with Fluorescent Microsphere Perfusion.\",\"authors\":\"Xiaojie Cao, Xiaoyan Li, Min Li, Jiawei Sun, Zhaoshuai Gao, Xiaowei Li, Qian Li, Zhifeng Shao, Chunhai Fan, Jielin Sun\",\"doi\":\"10.1021/acsbiomaterials.4c00546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Visualizing the whole vascular network system is crucial for understanding the pathogenesis of specific diseases and devising targeted therapeutic interventions. Although the combination of light sheet microscopy and tissue-clearing methods has emerged as a promising approach for investigating the blood vascular network, leveraging the spatial resolution down to the capillary level and the ability to image centimeter-scale samples remains difficult. Especially, as the resolution improves, the issue of photobleaching outside the field of view poses a challenge to image the whole vascular network of adult mice at capillary resolution. Here, we devise a fluorescent microsphere vascular perfusion method to enable labeling of the whole vascular network in adult mice, which overcomes the photobleaching limit during the imaging of large samples. Moreover, by combining the utilization of a large-scale light-sheet microscope and tissue clearing protocols for whole-mouse samples, we achieve the capillary-level imaging resolution (3.2 × 3.2 × 6.5 μm) of the whole vascular network with dimensions of 45 × 15 × 82 mm in adult mice. This method thus holds great potential to deliver mesoscopic resolution images of various tissue organs for whole-animal imaging.</p>\",\"PeriodicalId\":8,\"journal\":{\"name\":\"ACS Biomaterials Science & Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Biomaterials Science & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1021/acsbiomaterials.4c00546\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c00546","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

可视化整个血管网络系统对于了解特定疾病的发病机制和设计有针对性的治疗干预措施至关重要。虽然光片显微镜与组织清除方法的结合已成为研究血液血管网络的一种很有前景的方法,但要充分利用低至毛细血管水平的空间分辨率和厘米级样本的成像能力仍然很困难。特别是,随着分辨率的提高,视野外的光漂白问题对以毛细血管分辨率成像成年小鼠的整个血管网络构成了挑战。在这里,我们设计了一种荧光微球血管灌注方法,可以标记成年小鼠的整个血管网络,克服了大样本成像过程中的光漂白限制。此外,通过结合使用大型光片显微镜和整只小鼠样本的组织清除方案,我们实现了成年小鼠整个血管网络的毛细血管级成像分辨率(3.2 × 3.2 × 6.5 μm),尺寸为 45 × 15 × 82 mm。因此,这种方法在为全动物成像提供各种组织器官的中观分辨率图像方面具有巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Light-Sheet Microscopic Imaging of Whole-Mouse Vascular Network with Fluorescent Microsphere Perfusion.

Light-Sheet Microscopic Imaging of Whole-Mouse Vascular Network with Fluorescent Microsphere Perfusion.

Visualizing the whole vascular network system is crucial for understanding the pathogenesis of specific diseases and devising targeted therapeutic interventions. Although the combination of light sheet microscopy and tissue-clearing methods has emerged as a promising approach for investigating the blood vascular network, leveraging the spatial resolution down to the capillary level and the ability to image centimeter-scale samples remains difficult. Especially, as the resolution improves, the issue of photobleaching outside the field of view poses a challenge to image the whole vascular network of adult mice at capillary resolution. Here, we devise a fluorescent microsphere vascular perfusion method to enable labeling of the whole vascular network in adult mice, which overcomes the photobleaching limit during the imaging of large samples. Moreover, by combining the utilization of a large-scale light-sheet microscope and tissue clearing protocols for whole-mouse samples, we achieve the capillary-level imaging resolution (3.2 × 3.2 × 6.5 μm) of the whole vascular network with dimensions of 45 × 15 × 82 mm in adult mice. This method thus holds great potential to deliver mesoscopic resolution images of various tissue organs for whole-animal imaging.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Biomaterials Science & Engineering
ACS Biomaterials Science & Engineering Materials Science-Biomaterials
CiteScore
10.30
自引率
3.40%
发文量
413
期刊介绍: ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics: Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信