蚕的细菌感染模型有助于鉴定一种强效、超快速杀菌抗生素溶菌酶 E。

IF 2.1 4区 医学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Hiroshi Hamamoto
{"title":"蚕的细菌感染模型有助于鉴定一种强效、超快速杀菌抗生素溶菌酶 E。","authors":"Hiroshi Hamamoto","doi":"10.1038/s41429-024-00739-x","DOIUrl":null,"url":null,"abstract":"The development of novel antimicrobial agents is required to solve the problem of antimicrobial resistance. We established a quantitative method for evaluating the therapeutic efficacy of antimicrobial agents in a silkworm bacterial infection model. Pharmacokinetic factors are present in the silkworm as well as in mice, and evaluating the therapeutic efficacy of antimicrobial agents is possible in a silkworm infection model, comparable to that in a mammalian model. This silkworm model was used to screen for novel antimicrobial agents with therapeutic efficacy as an indicator. As a result, a new antibiotic, lysocin E, was discovered. Lysocin E has a completely different mechanism of action from existing antimicrobial agents, and its potent bactericidal activity leads to remarkable therapeutic efficacy in a mouse model. In this review, I describe the features of the silkworm model that have contributed to the discovery of lysocin E and its mechanisms of action.","PeriodicalId":54884,"journal":{"name":"Journal of Antibiotics","volume":"77 8","pages":"477-485"},"PeriodicalIF":2.1000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41429-024-00739-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Silkworm model of bacterial infection facilitates the identification of lysocin E, a potent, ultra-rapid bactericidal antibiotic\",\"authors\":\"Hiroshi Hamamoto\",\"doi\":\"10.1038/s41429-024-00739-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of novel antimicrobial agents is required to solve the problem of antimicrobial resistance. We established a quantitative method for evaluating the therapeutic efficacy of antimicrobial agents in a silkworm bacterial infection model. Pharmacokinetic factors are present in the silkworm as well as in mice, and evaluating the therapeutic efficacy of antimicrobial agents is possible in a silkworm infection model, comparable to that in a mammalian model. This silkworm model was used to screen for novel antimicrobial agents with therapeutic efficacy as an indicator. As a result, a new antibiotic, lysocin E, was discovered. Lysocin E has a completely different mechanism of action from existing antimicrobial agents, and its potent bactericidal activity leads to remarkable therapeutic efficacy in a mouse model. In this review, I describe the features of the silkworm model that have contributed to the discovery of lysocin E and its mechanisms of action.\",\"PeriodicalId\":54884,\"journal\":{\"name\":\"Journal of Antibiotics\",\"volume\":\"77 8\",\"pages\":\"477-485\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41429-024-00739-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Antibiotics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s41429-024-00739-x\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Antibiotics","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41429-024-00739-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

要解决抗菌剂耐药性问题,就必须开发新型抗菌剂。我们建立了一种在家蚕细菌感染模型中评估抗菌剂疗效的定量方法。蚕和小鼠一样存在药代动力学因素,因此在蚕感染模型中评估抗菌剂的疗效与在哺乳动物模型中评估疗效相当。这种家蚕模型被用来筛选以疗效为指标的新型抗菌剂。结果发现了一种新的抗生素--溶菌酶 E。溶菌酶 E 的作用机制与现有的抗菌剂完全不同,其强大的杀菌活性使其在小鼠模型中具有显著的疗效。在这篇综述中,我将介绍有助于发现溶菌酶 E 及其作用机制的家蚕模型的特点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Silkworm model of bacterial infection facilitates the identification of lysocin E, a potent, ultra-rapid bactericidal antibiotic

Silkworm model of bacterial infection facilitates the identification of lysocin E, a potent, ultra-rapid bactericidal antibiotic

Silkworm model of bacterial infection facilitates the identification of lysocin E, a potent, ultra-rapid bactericidal antibiotic
The development of novel antimicrobial agents is required to solve the problem of antimicrobial resistance. We established a quantitative method for evaluating the therapeutic efficacy of antimicrobial agents in a silkworm bacterial infection model. Pharmacokinetic factors are present in the silkworm as well as in mice, and evaluating the therapeutic efficacy of antimicrobial agents is possible in a silkworm infection model, comparable to that in a mammalian model. This silkworm model was used to screen for novel antimicrobial agents with therapeutic efficacy as an indicator. As a result, a new antibiotic, lysocin E, was discovered. Lysocin E has a completely different mechanism of action from existing antimicrobial agents, and its potent bactericidal activity leads to remarkable therapeutic efficacy in a mouse model. In this review, I describe the features of the silkworm model that have contributed to the discovery of lysocin E and its mechanisms of action.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Antibiotics
Journal of Antibiotics 医学-免疫学
CiteScore
6.60
自引率
3.00%
发文量
87
审稿时长
1 months
期刊介绍: The Journal of Antibiotics seeks to promote research on antibiotics and related types of biologically active substances and publishes Articles, Review Articles, Brief Communication, Correspondence and other specially commissioned reports. The Journal of Antibiotics accepts papers on biochemical, chemical, microbiological and pharmacological studies. However, studies regarding human therapy do not fall under the journal’s scope. Contributions regarding recently discovered antibiotics and biologically active microbial products are particularly encouraged. Topics of particular interest within the journal''s scope include, but are not limited to, those listed below: Discovery of new antibiotics and related types of biologically active substances Production, isolation, characterization, structural elucidation, chemical synthesis and derivatization, biological activities, mechanisms of action, and structure-activity relationships of antibiotics and related types of biologically active substances Biosynthesis, bioconversion, taxonomy and genetic studies on producing microorganisms, as well as improvement of production of antibiotics and related types of biologically active substances Novel physical, chemical, biochemical, microbiological or pharmacological methods for detection, assay, determination, structural elucidation and evaluation of antibiotics and related types of biologically active substances Newly found properties, mechanisms of action and resistance-development of antibiotics and related types of biologically active substances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信