利用多对比核磁共振成像放射组学预测胶质瘤中 IDH 突变状态的两阶段训练框架

IF 8.1 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Nghi C D Truong, Chandan Ganesh Bangalore Yogananda, Benjamin C Wagner, James M Holcomb, Divya Reddy, Niloufar Saadat, Kimmo J Hatanpaa, Toral R Patel, Baowei Fei, Matthew D Lee, Rajan Jain, Richard J Bruce, Marco C Pinho, Ananth J Madhuranthakam, Joseph A Maldjian
{"title":"利用多对比核磁共振成像放射组学预测胶质瘤中 IDH 突变状态的两阶段训练框架","authors":"Nghi C D Truong, Chandan Ganesh Bangalore Yogananda, Benjamin C Wagner, James M Holcomb, Divya Reddy, Niloufar Saadat, Kimmo J Hatanpaa, Toral R Patel, Baowei Fei, Matthew D Lee, Rajan Jain, Richard J Bruce, Marco C Pinho, Ananth J Madhuranthakam, Joseph A Maldjian","doi":"10.1148/ryai.230218","DOIUrl":null,"url":null,"abstract":"<p><p>Purpose To develop a radiomics framework for preoperative MRI-based prediction of isocitrate dehydrogenase (<i>IDH</i>) mutation status, a crucial glioma prognostic indicator. Materials and Methods Radiomics features (shape, first-order statistics, and texture) were extracted from the whole tumor or the combination of nonenhancing, necrosis, and edema regions. Segmentation masks were obtained via the federated tumor segmentation tool or the original data source. Boruta, a wrapper-based feature selection algorithm, identified relevant features. Addressing the imbalance between mutated and wild-type cases, multiple prediction models were trained on balanced data subsets using random forest or XGBoost and assembled to build the final classifier. The framework was evaluated using retrospective MRI scans from three public datasets (The Cancer Imaging Archive [TCIA, 227 patients], the University of California San Francisco Preoperative Diffuse Glioma MRI dataset [UCSF, 495 patients], and the Erasmus Glioma Database [EGD, 456 patients]) and internal datasets collected from the University of Texas Southwestern Medical Center (UTSW, 356 patients), New York University (NYU, 136 patients), and University of Wisconsin-Madison (UWM, 174 patients). TCIA and UTSW served as separate training sets, while the remaining data constituted the test set (1617 or 1488 testing cases, respectively). Results The best performing models trained on the TCIA dataset achieved area under the receiver operating characteristic curve (AUC) values of 0.89 for UTSW, 0.86 for NYU, 0.93 for UWM, 0.94 for UCSF, and 0.88 for EGD test sets. The best performing models trained on the UTSW dataset achieved slightly higher AUCs: 0.92 for TCIA, 0.88 for NYU, 0.96 for UWM, 0.93 for UCSF, and 0.90 for EGD. Conclusion This MRI radiomics-based framework shows promise for accurate preoperative prediction of <i>IDH</i> mutation status in patients with glioma. <b>Keywords:</b> Glioma, Isocitrate Dehydrogenase Mutation, <i>IDH</i> Mutation, Radiomics, MRI <i>Supplemental material is available for this article.</i> Published under a CC BY 4.0 license. See also commentary by Moassefi and Erickson in this issue.</p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11294953/pdf/","citationCount":"0","resultStr":"{\"title\":\"Two-Stage Training Framework Using Multicontrast MRI Radiomics for <i>IDH</i> Mutation Status Prediction in Glioma.\",\"authors\":\"Nghi C D Truong, Chandan Ganesh Bangalore Yogananda, Benjamin C Wagner, James M Holcomb, Divya Reddy, Niloufar Saadat, Kimmo J Hatanpaa, Toral R Patel, Baowei Fei, Matthew D Lee, Rajan Jain, Richard J Bruce, Marco C Pinho, Ananth J Madhuranthakam, Joseph A Maldjian\",\"doi\":\"10.1148/ryai.230218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Purpose To develop a radiomics framework for preoperative MRI-based prediction of isocitrate dehydrogenase (<i>IDH</i>) mutation status, a crucial glioma prognostic indicator. Materials and Methods Radiomics features (shape, first-order statistics, and texture) were extracted from the whole tumor or the combination of nonenhancing, necrosis, and edema regions. Segmentation masks were obtained via the federated tumor segmentation tool or the original data source. Boruta, a wrapper-based feature selection algorithm, identified relevant features. Addressing the imbalance between mutated and wild-type cases, multiple prediction models were trained on balanced data subsets using random forest or XGBoost and assembled to build the final classifier. The framework was evaluated using retrospective MRI scans from three public datasets (The Cancer Imaging Archive [TCIA, 227 patients], the University of California San Francisco Preoperative Diffuse Glioma MRI dataset [UCSF, 495 patients], and the Erasmus Glioma Database [EGD, 456 patients]) and internal datasets collected from the University of Texas Southwestern Medical Center (UTSW, 356 patients), New York University (NYU, 136 patients), and University of Wisconsin-Madison (UWM, 174 patients). TCIA and UTSW served as separate training sets, while the remaining data constituted the test set (1617 or 1488 testing cases, respectively). Results The best performing models trained on the TCIA dataset achieved area under the receiver operating characteristic curve (AUC) values of 0.89 for UTSW, 0.86 for NYU, 0.93 for UWM, 0.94 for UCSF, and 0.88 for EGD test sets. The best performing models trained on the UTSW dataset achieved slightly higher AUCs: 0.92 for TCIA, 0.88 for NYU, 0.96 for UWM, 0.93 for UCSF, and 0.90 for EGD. Conclusion This MRI radiomics-based framework shows promise for accurate preoperative prediction of <i>IDH</i> mutation status in patients with glioma. <b>Keywords:</b> Glioma, Isocitrate Dehydrogenase Mutation, <i>IDH</i> Mutation, Radiomics, MRI <i>Supplemental material is available for this article.</i> Published under a CC BY 4.0 license. See also commentary by Moassefi and Erickson in this issue.</p>\",\"PeriodicalId\":29787,\"journal\":{\"name\":\"Radiology-Artificial Intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11294953/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiology-Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1148/ryai.230218\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiology-Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1148/ryai.230218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

"刚刚接受 "的论文经过同行评审,已被接受在《放射学》上发表:人工智能》上发表。这篇文章在以最终版本发表之前,还将经过校对、排版和校对审核。请注意,在制作最终校对稿的过程中,可能会发现影响内容的错误。目的 建立一个放射组学框架,用于术前基于 MRI 预测 IDH 突变状态,这是胶质瘤预后的一个重要指标。材料与方法 从整个肿瘤或非增强、坏死和水肿区域的组合中提取放射组学特征(形状、一阶统计和纹理)。分割掩膜通过联合肿瘤分割工具或原始数据源获得。Boruta是一种基于包装的特征选择算法,可识别相关特征。为了解决突变型病例和野生型病例之间的不平衡问题,使用随机森林或 XGBoost 在平衡数据子集上训练了多个预测模型,并将其组合起来建立最终分类器。利用三个公共数据集(癌症成像档案(TCIA,227 名患者)、加州大学旧金山分校术前弥漫性胶质瘤 MRI 数据集(UCSF,495 名患者))的回顾性 MRI 扫描对该框架进行了评估、和伊拉斯谟胶质瘤数据库(EGD,456 名患者))以及UT 西南医学中心(UTSW,356 名患者)、纽约大学(NYU,136 名患者)和威斯康星大学麦迪逊分校(UWM,174 名患者)收集的内部数据集。TCIA和UTSW作为单独的训练集,其余数据构成测试集(分别有1617个或1488个测试病例)。结果 在 TCIA 数据集上训练的表现最好的模型,其接收者操作特征曲线下面积(AUC)值分别为:UTSW 0.89、NYU 0.86、UWM 0.93、UCSF 0.94、EGD 测试集 0.88。在UTSW数据集上训练的表现最好的模型的AUC略高:TCIA为0.92,NYU为0.88,UWM为0.96,UCSF为0.93,EGD为0.90。结论 这种基于磁共振成像放射组学的框架有望准确预测胶质瘤患者的术前IDH突变状态。以 CC BY 4.0 许可发布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two-Stage Training Framework Using Multicontrast MRI Radiomics for IDH Mutation Status Prediction in Glioma.

Purpose To develop a radiomics framework for preoperative MRI-based prediction of isocitrate dehydrogenase (IDH) mutation status, a crucial glioma prognostic indicator. Materials and Methods Radiomics features (shape, first-order statistics, and texture) were extracted from the whole tumor or the combination of nonenhancing, necrosis, and edema regions. Segmentation masks were obtained via the federated tumor segmentation tool or the original data source. Boruta, a wrapper-based feature selection algorithm, identified relevant features. Addressing the imbalance between mutated and wild-type cases, multiple prediction models were trained on balanced data subsets using random forest or XGBoost and assembled to build the final classifier. The framework was evaluated using retrospective MRI scans from three public datasets (The Cancer Imaging Archive [TCIA, 227 patients], the University of California San Francisco Preoperative Diffuse Glioma MRI dataset [UCSF, 495 patients], and the Erasmus Glioma Database [EGD, 456 patients]) and internal datasets collected from the University of Texas Southwestern Medical Center (UTSW, 356 patients), New York University (NYU, 136 patients), and University of Wisconsin-Madison (UWM, 174 patients). TCIA and UTSW served as separate training sets, while the remaining data constituted the test set (1617 or 1488 testing cases, respectively). Results The best performing models trained on the TCIA dataset achieved area under the receiver operating characteristic curve (AUC) values of 0.89 for UTSW, 0.86 for NYU, 0.93 for UWM, 0.94 for UCSF, and 0.88 for EGD test sets. The best performing models trained on the UTSW dataset achieved slightly higher AUCs: 0.92 for TCIA, 0.88 for NYU, 0.96 for UWM, 0.93 for UCSF, and 0.90 for EGD. Conclusion This MRI radiomics-based framework shows promise for accurate preoperative prediction of IDH mutation status in patients with glioma. Keywords: Glioma, Isocitrate Dehydrogenase Mutation, IDH Mutation, Radiomics, MRI Supplemental material is available for this article. Published under a CC BY 4.0 license. See also commentary by Moassefi and Erickson in this issue.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.20
自引率
1.00%
发文量
0
期刊介绍: Radiology: Artificial Intelligence is a bi-monthly publication that focuses on the emerging applications of machine learning and artificial intelligence in the field of imaging across various disciplines. This journal is available online and accepts multiple manuscript types, including Original Research, Technical Developments, Data Resources, Review articles, Editorials, Letters to the Editor and Replies, Special Reports, and AI in Brief.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信