利用基于细胞学的深度学习预测肿瘤来源:炒作还是希望?

IF 81.1 1区 医学 Q1 ONCOLOGY
Elie Rassy, Nicholas Pavlidis
{"title":"利用基于细胞学的深度学习预测肿瘤来源:炒作还是希望?","authors":"Elie Rassy, Nicholas Pavlidis","doi":"10.1038/s41571-024-00906-x","DOIUrl":null,"url":null,"abstract":"The majority of patients with cancers of unknown primary have unfavourable outcomes when they receive empirical chemotherapy. The shift towards using precision medicine-based treatment strategies involves two options: tissue-agnostic or site-specific approaches. Here, we reflect on how cytology-based deep learning tools can be leveraged in these approaches.","PeriodicalId":19079,"journal":{"name":"Nature Reviews Clinical Oncology","volume":null,"pages":null},"PeriodicalIF":81.1000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting tumour origin with cytology-based deep learning: hype or hope?\",\"authors\":\"Elie Rassy, Nicholas Pavlidis\",\"doi\":\"10.1038/s41571-024-00906-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The majority of patients with cancers of unknown primary have unfavourable outcomes when they receive empirical chemotherapy. The shift towards using precision medicine-based treatment strategies involves two options: tissue-agnostic or site-specific approaches. Here, we reflect on how cytology-based deep learning tools can be leveraged in these approaches.\",\"PeriodicalId\":19079,\"journal\":{\"name\":\"Nature Reviews Clinical Oncology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":81.1000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Reviews Clinical Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s41571-024-00906-x\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Clinical Oncology","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41571-024-00906-x","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

大多数原发灶不明的癌症患者在接受经验性化疗后都会出现不良后果。向使用基于精准医学的治疗策略转变涉及两种选择:组织诊断或特定部位方法。在此,我们将探讨如何在这些方法中利用基于细胞学的深度学习工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting tumour origin with cytology-based deep learning: hype or hope?
The majority of patients with cancers of unknown primary have unfavourable outcomes when they receive empirical chemotherapy. The shift towards using precision medicine-based treatment strategies involves two options: tissue-agnostic or site-specific approaches. Here, we reflect on how cytology-based deep learning tools can be leveraged in these approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
99.40
自引率
0.40%
发文量
114
审稿时长
6-12 weeks
期刊介绍: Nature Reviews publishes clinical content authored by internationally renowned clinical academics and researchers, catering to readers in the medical sciences at postgraduate levels and beyond. Although targeted at practicing doctors, researchers, and academics within specific specialties, the aim is to ensure accessibility for readers across various medical disciplines. The journal features in-depth Reviews offering authoritative and current information, contextualizing topics within the history and development of a field. Perspectives, News & Views articles, and the Research Highlights section provide topical discussions, opinions, and filtered primary research from diverse medical journals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信