缓解磁耦合高频射频识别系统中的金属体接近效应

IF 2.3 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Somnath Mukherjee;Debidas Kundu;Ashis Khan
{"title":"缓解磁耦合高频射频识别系统中的金属体接近效应","authors":"Somnath Mukherjee;Debidas Kundu;Ashis Khan","doi":"10.1109/JRFID.2024.3368882","DOIUrl":null,"url":null,"abstract":"The deleterious effect of eddy current due to the presence of a metal in magnetically coupled resonant high-frequency radio frequency identification (HF RFID) systems is addressed, and remediation using a resonant loop is discussed. The proposed solution is much more economic than conventional ferrite-based shielding. The resonant loop, which is referred to as auxiliary coil in this paper, does not increase the profile of the existing HF RFID tag. Analysis is carried out using full-wave numerical simulation resulting in an equivalent circuit model, and validated with measurements. The technique is illustrated through applications like HF RFID tags in close proximity to a metal seal required for induction sealing, as well for extending read range of readers compelled to operate near metallic environment.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"8 ","pages":"421-430"},"PeriodicalIF":2.3000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mitigation of Metal Body Proximity Effect in Magnetically Coupled HF RFID Systems\",\"authors\":\"Somnath Mukherjee;Debidas Kundu;Ashis Khan\",\"doi\":\"10.1109/JRFID.2024.3368882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The deleterious effect of eddy current due to the presence of a metal in magnetically coupled resonant high-frequency radio frequency identification (HF RFID) systems is addressed, and remediation using a resonant loop is discussed. The proposed solution is much more economic than conventional ferrite-based shielding. The resonant loop, which is referred to as auxiliary coil in this paper, does not increase the profile of the existing HF RFID tag. Analysis is carried out using full-wave numerical simulation resulting in an equivalent circuit model, and validated with measurements. The technique is illustrated through applications like HF RFID tags in close proximity to a metal seal required for induction sealing, as well for extending read range of readers compelled to operate near metallic environment.\",\"PeriodicalId\":73291,\"journal\":{\"name\":\"IEEE journal of radio frequency identification\",\"volume\":\"8 \",\"pages\":\"421-430\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE journal of radio frequency identification\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10443627/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal of radio frequency identification","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10443627/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了在磁耦合谐振高频射频识别(HF RFID)系统中由于金属的存在而产生的涡流有害影响,并讨论了使用谐振回路进行补救的问题。所提出的解决方案比传统的铁氧体屏蔽更经济。谐振回路在本文中被称为辅助线圈,不会增加现有高频射频识别(RFID)标签的外形尺寸。分析采用全波数值模拟,得出等效电路模型,并通过测量进行验证。该技术的应用实例包括高频射频识别(RFID)标签靠近感应密封所需的金属密封件,以及扩大阅读器的读取范围,这些阅读器必须在金属环境附近工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mitigation of Metal Body Proximity Effect in Magnetically Coupled HF RFID Systems
The deleterious effect of eddy current due to the presence of a metal in magnetically coupled resonant high-frequency radio frequency identification (HF RFID) systems is addressed, and remediation using a resonant loop is discussed. The proposed solution is much more economic than conventional ferrite-based shielding. The resonant loop, which is referred to as auxiliary coil in this paper, does not increase the profile of the existing HF RFID tag. Analysis is carried out using full-wave numerical simulation resulting in an equivalent circuit model, and validated with measurements. The technique is illustrated through applications like HF RFID tags in close proximity to a metal seal required for induction sealing, as well for extending read range of readers compelled to operate near metallic environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信