Caixia Tan , Yuanyuan xiao , Ting Liu , Siyao Chen , Juan Zhou , Sisi Zhang , Yiran Hu , Anhua Wu , Chunhui Li
{"title":"利用反向疫苗学和免疫信息学方法开发针对艰难梭菌的多表位 mRNA 疫苗","authors":"Caixia Tan , Yuanyuan xiao , Ting Liu , Siyao Chen , Juan Zhou , Sisi Zhang , Yiran Hu , Anhua Wu , Chunhui Li","doi":"10.1016/j.synbio.2024.05.008","DOIUrl":null,"url":null,"abstract":"<div><p><em>Clostridioides difficile</em> (<em>C. difficile</em>), as the major pathogen of diarrhea in healthcare settings, has become increasingly prevalent within community populations, resulting in significant morbidity and mortality. However, the therapeutic options for <em>Clostridioides difficile</em> infection (CDI) remain limited, and as of now, no authorized vaccine is available to combat this disease. Therefore, the development of a novel vaccine against <em>C. difficile</em> is of paramount importance. In our study, the complete proteome sequences of 118 strains of <em>C. difficile</em> were downloaded and analyzed. We found four antigenic proteins that were highly conserved and can be used for epitope identification. We designed two vaccines, WLcd1 and WLcd2, that contain the ideal T-cell and B-cell epitopes, adjuvants, and the pan HLA DR-binding epitope (PADRE) sequences. The biophysical and chemical assessments of these vaccine candidates indicated that they were suitable for immunogenic applications. Molecular docking analyses revealed that WLcd1 bonded with higher affinity to Toll-like receptors (TLRs) than WLcd2. Furthermore, molecular dynamics (MD) simulations, performed using Gmx_MMPBSA v1.56, confirmed the binding stability of WLcd1 with TLR2 and TLR4. The preliminary findings suggested that this multi-epitope vaccine could be a promising candidate for protection against CDI; however, experimental studies are necessary to confirm these predictions.</p></div>","PeriodicalId":22148,"journal":{"name":"Synthetic and Systems Biotechnology","volume":"9 4","pages":"Pages 667-683"},"PeriodicalIF":4.4000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405805X24000838/pdfft?md5=c0004b11a30ad7b49ee9863aa380bea4&pid=1-s2.0-S2405805X24000838-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Development of multi-epitope mRNA vaccine against Clostridioides difficile using reverse vaccinology and immunoinformatics approaches\",\"authors\":\"Caixia Tan , Yuanyuan xiao , Ting Liu , Siyao Chen , Juan Zhou , Sisi Zhang , Yiran Hu , Anhua Wu , Chunhui Li\",\"doi\":\"10.1016/j.synbio.2024.05.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><em>Clostridioides difficile</em> (<em>C. difficile</em>), as the major pathogen of diarrhea in healthcare settings, has become increasingly prevalent within community populations, resulting in significant morbidity and mortality. However, the therapeutic options for <em>Clostridioides difficile</em> infection (CDI) remain limited, and as of now, no authorized vaccine is available to combat this disease. Therefore, the development of a novel vaccine against <em>C. difficile</em> is of paramount importance. In our study, the complete proteome sequences of 118 strains of <em>C. difficile</em> were downloaded and analyzed. We found four antigenic proteins that were highly conserved and can be used for epitope identification. We designed two vaccines, WLcd1 and WLcd2, that contain the ideal T-cell and B-cell epitopes, adjuvants, and the pan HLA DR-binding epitope (PADRE) sequences. The biophysical and chemical assessments of these vaccine candidates indicated that they were suitable for immunogenic applications. Molecular docking analyses revealed that WLcd1 bonded with higher affinity to Toll-like receptors (TLRs) than WLcd2. Furthermore, molecular dynamics (MD) simulations, performed using Gmx_MMPBSA v1.56, confirmed the binding stability of WLcd1 with TLR2 and TLR4. The preliminary findings suggested that this multi-epitope vaccine could be a promising candidate for protection against CDI; however, experimental studies are necessary to confirm these predictions.</p></div>\",\"PeriodicalId\":22148,\"journal\":{\"name\":\"Synthetic and Systems Biotechnology\",\"volume\":\"9 4\",\"pages\":\"Pages 667-683\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2405805X24000838/pdfft?md5=c0004b11a30ad7b49ee9863aa380bea4&pid=1-s2.0-S2405805X24000838-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Synthetic and Systems Biotechnology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405805X24000838\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthetic and Systems Biotechnology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405805X24000838","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
难辨梭状芽孢杆菌(CDI)是医疗机构中腹泻的主要病原体,在社区人群中越来越普遍,导致了严重的发病率和死亡率。然而,艰难梭菌感染(CDI)的治疗方案仍然有限,而且到目前为止,还没有获得授权的疫苗来防治这种疾病。因此,开发一种新型的艰难梭菌疫苗至关重要。在我们的研究中,我们下载并分析了 118 株艰难梭菌的完整蛋白质组序列。我们发现了四种高度保守的抗原蛋白,可用于表位鉴定。我们设计了两种疫苗 WLcd1 和 WLcd2,其中包含理想的 T 细胞和 B 细胞表位、佐剂和泛 HLA DR 结合表位 (PADRE) 序列。对这些候选疫苗进行的生物物理和化学评估表明,它们适用于免疫原性应用。分子对接分析表明,WLcd1 与 Toll 样受体(TLR)的结合亲和力高于 WLcd2。此外,使用 Gmx_MMPBSA v1.56 进行的分子动力学(MD)模拟证实了 WLcd1 与 TLR2 和 TLR4 的结合稳定性。初步研究结果表明,这种多表位疫苗很有希望成为预防 CDI 的候选疫苗;不过,还需要进行实验研究来证实这些预测。
Development of multi-epitope mRNA vaccine against Clostridioides difficile using reverse vaccinology and immunoinformatics approaches
Clostridioides difficile (C. difficile), as the major pathogen of diarrhea in healthcare settings, has become increasingly prevalent within community populations, resulting in significant morbidity and mortality. However, the therapeutic options for Clostridioides difficile infection (CDI) remain limited, and as of now, no authorized vaccine is available to combat this disease. Therefore, the development of a novel vaccine against C. difficile is of paramount importance. In our study, the complete proteome sequences of 118 strains of C. difficile were downloaded and analyzed. We found four antigenic proteins that were highly conserved and can be used for epitope identification. We designed two vaccines, WLcd1 and WLcd2, that contain the ideal T-cell and B-cell epitopes, adjuvants, and the pan HLA DR-binding epitope (PADRE) sequences. The biophysical and chemical assessments of these vaccine candidates indicated that they were suitable for immunogenic applications. Molecular docking analyses revealed that WLcd1 bonded with higher affinity to Toll-like receptors (TLRs) than WLcd2. Furthermore, molecular dynamics (MD) simulations, performed using Gmx_MMPBSA v1.56, confirmed the binding stability of WLcd1 with TLR2 and TLR4. The preliminary findings suggested that this multi-epitope vaccine could be a promising candidate for protection against CDI; however, experimental studies are necessary to confirm these predictions.
期刊介绍:
Synthetic and Systems Biotechnology aims to promote the communication of original research in synthetic and systems biology, with strong emphasis on applications towards biotechnology. This journal is a quarterly peer-reviewed journal led by Editor-in-Chief Lixin Zhang. The journal publishes high-quality research; focusing on integrative approaches to enable the understanding and design of biological systems, and research to develop the application of systems and synthetic biology to natural systems. This journal will publish Articles, Short notes, Methods, Mini Reviews, Commentary and Conference reviews.