高频纳秒和微秒电穿孔过程中的线粒体去极化和 ATP 损伤

IF 4.8 2区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Paulina Malakauskaitė , Augustinas Želvys , Auksė Zinkevičienė , Eglė Mickevičiūtė , Eivina Radzevičiūtė-Valčiukė , Veronika Malyško-Ptašinskė , Barbora Lekešytė , Jurij Novickij , Vytautas Kašėta , Vitalij Novickij
{"title":"高频纳秒和微秒电穿孔过程中的线粒体去极化和 ATP 损伤","authors":"Paulina Malakauskaitė ,&nbsp;Augustinas Želvys ,&nbsp;Auksė Zinkevičienė ,&nbsp;Eglė Mickevičiūtė ,&nbsp;Eivina Radzevičiūtė-Valčiukė ,&nbsp;Veronika Malyško-Ptašinskė ,&nbsp;Barbora Lekešytė ,&nbsp;Jurij Novickij ,&nbsp;Vytautas Kašėta ,&nbsp;Vitalij Novickij","doi":"10.1016/j.bioelechem.2024.108742","DOIUrl":null,"url":null,"abstract":"<div><p>It is predicted that ultra-short electric field pulses (nanosecond) can selectively permeabilize intracellular structures (e.g., mitochondria) without significant effects on the outer cell plasma membrane. Such a phenomenon would have high applicability in cancer treatment and could be employed to modulate cell death type or immunogenic response. Therefore, in this study, we compare the effects of 100 µs x 8 pulses (ESOPE − European Standard Operating Procedures on Electrochemotherapy) and bursts of 100 ns pulses for modulation of the mitochondria membrane potential. We characterize the efficacies of various protocols to trigger permeabilization, depolarize mitochondria (evaluated 1 h  after treatment), the extent of ATP depletion and generation of reactive oxygen species (ROS). Finally, we employ the most prominent protocols in the context of Ca<sup>2+</sup> electrochemotherapy <em>in vitro</em>. We provide experimental proof that 7.5–12.5 kV/cm x 100 ns pulses can be used to modulate mitochondrial potential, however, the permeabilization of the outer membrane is still a prerequisite for depolarization. Similar to 100 µs x 8 pulses, the higher the permeabilization rate, the higher the mitochondrial depolarization. Nevertheless, 100 ns pulses result in lesser ROS generation when compared to ESOPE, even when the energy input is several-fold higher than for the microsecond procedure. At the same time, it shows that even the short 100 ns pulses can be successfully used for Ca<sup>2+</sup> electrochemotherapy, ensuring excellent cytotoxic efficacy.</p></div>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"159 ","pages":"Article 108742"},"PeriodicalIF":4.8000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mitochondrial depolarization and ATP loss during high frequency nanosecond and microsecond electroporation\",\"authors\":\"Paulina Malakauskaitė ,&nbsp;Augustinas Želvys ,&nbsp;Auksė Zinkevičienė ,&nbsp;Eglė Mickevičiūtė ,&nbsp;Eivina Radzevičiūtė-Valčiukė ,&nbsp;Veronika Malyško-Ptašinskė ,&nbsp;Barbora Lekešytė ,&nbsp;Jurij Novickij ,&nbsp;Vytautas Kašėta ,&nbsp;Vitalij Novickij\",\"doi\":\"10.1016/j.bioelechem.2024.108742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>It is predicted that ultra-short electric field pulses (nanosecond) can selectively permeabilize intracellular structures (e.g., mitochondria) without significant effects on the outer cell plasma membrane. Such a phenomenon would have high applicability in cancer treatment and could be employed to modulate cell death type or immunogenic response. Therefore, in this study, we compare the effects of 100 µs x 8 pulses (ESOPE − European Standard Operating Procedures on Electrochemotherapy) and bursts of 100 ns pulses for modulation of the mitochondria membrane potential. We characterize the efficacies of various protocols to trigger permeabilization, depolarize mitochondria (evaluated 1 h  after treatment), the extent of ATP depletion and generation of reactive oxygen species (ROS). Finally, we employ the most prominent protocols in the context of Ca<sup>2+</sup> electrochemotherapy <em>in vitro</em>. We provide experimental proof that 7.5–12.5 kV/cm x 100 ns pulses can be used to modulate mitochondrial potential, however, the permeabilization of the outer membrane is still a prerequisite for depolarization. Similar to 100 µs x 8 pulses, the higher the permeabilization rate, the higher the mitochondrial depolarization. Nevertheless, 100 ns pulses result in lesser ROS generation when compared to ESOPE, even when the energy input is several-fold higher than for the microsecond procedure. At the same time, it shows that even the short 100 ns pulses can be successfully used for Ca<sup>2+</sup> electrochemotherapy, ensuring excellent cytotoxic efficacy.</p></div>\",\"PeriodicalId\":252,\"journal\":{\"name\":\"Bioelectrochemistry\",\"volume\":\"159 \",\"pages\":\"Article 108742\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioelectrochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S156753942400104X\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S156753942400104X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

据预测,超短电场脉冲(纳秒)可选择性地渗透细胞内结构(如线粒体),而不会对细胞外质膜产生明显影响。这种现象在癌症治疗中具有很高的适用性,可用于调节细胞死亡类型或免疫原性反应。因此,在本研究中,我们比较了 100 µs x 8 脉冲(ESOPE - 欧洲电化学疗法标准操作程序)和 100 ns 脉冲串对线粒体膜电位调节的效果。我们分析了各种方案在触发通透性、线粒体去极化(处理 1 小时后评估)、ATP 耗竭程度和活性氧(ROS)生成方面的功效。最后,我们在体外 Ca2+ 电化学疗法中采用了最突出的方案。我们通过实验证明,7.5-12.5 kV/cm x 100 ns 脉冲可用于调节线粒体电位,但外膜通透仍是去极化的先决条件。与 100 µs x 8 脉冲类似,通透率越高,线粒体去极化越高。不过,与 ESOPE 相比,100 毫微秒脉冲产生的 ROS 较少,即使输入的能量比微秒程序高出数倍。同时,这也表明即使是 100 毫微秒的短脉冲也能成功用于 Ca2+ 电化学疗法,从而确保出色的细胞毒性效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mitochondrial depolarization and ATP loss during high frequency nanosecond and microsecond electroporation

It is predicted that ultra-short electric field pulses (nanosecond) can selectively permeabilize intracellular structures (e.g., mitochondria) without significant effects on the outer cell plasma membrane. Such a phenomenon would have high applicability in cancer treatment and could be employed to modulate cell death type or immunogenic response. Therefore, in this study, we compare the effects of 100 µs x 8 pulses (ESOPE − European Standard Operating Procedures on Electrochemotherapy) and bursts of 100 ns pulses for modulation of the mitochondria membrane potential. We characterize the efficacies of various protocols to trigger permeabilization, depolarize mitochondria (evaluated 1 h  after treatment), the extent of ATP depletion and generation of reactive oxygen species (ROS). Finally, we employ the most prominent protocols in the context of Ca2+ electrochemotherapy in vitro. We provide experimental proof that 7.5–12.5 kV/cm x 100 ns pulses can be used to modulate mitochondrial potential, however, the permeabilization of the outer membrane is still a prerequisite for depolarization. Similar to 100 µs x 8 pulses, the higher the permeabilization rate, the higher the mitochondrial depolarization. Nevertheless, 100 ns pulses result in lesser ROS generation when compared to ESOPE, even when the energy input is several-fold higher than for the microsecond procedure. At the same time, it shows that even the short 100 ns pulses can be successfully used for Ca2+ electrochemotherapy, ensuring excellent cytotoxic efficacy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioelectrochemistry
Bioelectrochemistry 生物-电化学
CiteScore
9.10
自引率
6.00%
发文量
238
审稿时长
38 days
期刊介绍: An International Journal Devoted to Electrochemical Aspects of Biology and Biological Aspects of Electrochemistry Bioelectrochemistry is an international journal devoted to electrochemical principles in biology and biological aspects of electrochemistry. It publishes experimental and theoretical papers dealing with the electrochemical aspects of: • Electrified interfaces (electric double layers, adsorption, electron transfer, protein electrochemistry, basic principles of biosensors, biosensor interfaces and bio-nanosensor design and construction. • Electric and magnetic field effects (field-dependent processes, field interactions with molecules, intramolecular field effects, sensory systems for electric and magnetic fields, molecular and cellular mechanisms) • Bioenergetics and signal transduction (energy conversion, photosynthetic and visual membranes) • Biomembranes and model membranes (thermodynamics and mechanics, membrane transport, electroporation, fusion and insertion) • Electrochemical applications in medicine and biotechnology (drug delivery and gene transfer to cells and tissues, iontophoresis, skin electroporation, injury and repair). • Organization and use of arrays in-vitro and in-vivo, including as part of feedback control. • Electrochemical interrogation of biofilms as generated by microorganisms and tissue reaction associated with medical implants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信